
Modeling: User’s Guide
Release 0.9

Sébastien Bigaret

March 4, 2006

Email: sbigaret@users.sourceforge.net

CONTENTS

1 Introduction 1
1.1 A historic preamble . 1
1.2 About this manual. 1

I The essentials 3

2 Entity-Relationship Models 5
2.1 Sample models used in this manual. 5
2.2 Concepts. 7
2.3 Full description. 7
2.4 PyModels. 13
2.5 XML model . 27
2.6 General guidelines and gotchas. 32
2.7 Tools . 38
2.8 Some References on E.-R. Modelling. 38

3 Functionalities for Object Management 41
3.1 From model to python code. 41
3.2 The framework’s requirements on python code. 45
3.3 Automatic validation of referential and business-logic constraints. 46

4 Working with your objects: insert, changes, deletion 51
4.1 Ensuring unicity of an object. 51
4.2 Inserting an object. 52
4.3 Updating objects. 52
4.4 Deleting an object. 52
4.5 Fetching objects. 53
4.6 Saving Changes. 62
4.7 Discarding changes: the destruction process of anEditingContext 63

5 NestedEditingContext s 65
5.1 Bringing transactions to the object world. 65
5.2 Declaring and using a nestedEditingContext . 66
5.3 Miscellaneous developer’s hints. 67
5.4 Limitations with multiple childEditingContext s . 67

6 Integration in an application 69
6.1 Pure python applications. 69
6.2 Instructions of use in a multi-threaded environment. 69

i

6.3 Integration within application servers: using the sessioning mechanism. 70
6.4 Zope . 71
6.5 Others . 72

II Advanced techniques 73

7 Accessing a model and its properties 75

8 Generic manipulation of objects 77
8.1 Manipulating objects and their relationships. 77
8.2 Accessing the objects’ properties. 78
8.3 Mixing KeyValueCoding and model’s properties. 79

9 Handling custom types for attributes 81
9.1 Example: using FixedPoint for a price attribute. 81
9.2 Behind the scenes. 82

III Appendices 83

A Environment Variables 85
A.1 Core . 85
A.2 Postgresql specific. 87
A.3 Mysql specific . 88

B Frequently Asked Questions 89
B.1 Designing the model. 89

ii

CHAPTER

ONE

Introduction

The Modeling framework intends to fill the gap between the python object world and relational databases. It relies on
a model, based on Entity-Relationship Modelling, that describes how the two worlds map to each other. From your
design of such a model, the database’s schema and corresponding python classes are automatically generated. Thus,
once you have designed how your classes should be stored in the RDBMS, you can focus on the real challenges –
the logic of your business objects – while remaining in the object-oriented world of those objects and never having to
worry about the SQL and RDBMS persistence layer below.

1.1 A historic preamble

This framework is intended to be an open-source port of the Enterprise Object Framework ™ [hereafter called
EOF], a NeXT technology now owned by Apple Computer, Inc. and used in its WebObjects™ application server.
I have worked for two years using this framework before I switched to an other company and a new technology
(zope+python); and, of course, once I had seen the power of such a framework, that was pretty hard to go back to
manually preparing the DB schema, the SQL statements, etc... Discovering python and zope, and since using the
original framework was not an option for the company I work for, I began developing a few tools to help me with
DB-integration into an object world and, after a few shaky tries, I realized that what I really missed and was eager for
was the EOF and that, instead of trying to re-invent the wheel, I’d better go ahead and develop my own version of the
framework.

Disclaimer: The EOF goes much farther than this framework: it is well tested and robust for many years and in any
case should not be assimilated to what I have done. If you have the opportunity to buy and use the original EOF, go
for it, as this is a really pleasant and instructive journey.

Enterprise Object Framework™ is a trademark of NeXT Software, Inc; Apple and WebObjects are trademarks of
Apple Computer, Inc.

1.2 About this manual

tbd.

1

2

Part I

The essentials

3

CHAPTER

TWO

Entity-Relationship Models

Introduction

Models define how an object model maps to a relational model. The model used follows the Entity-Relationship
Modelling. This discipline is still very active, even if it was initiated by M. Peter P. Chen in 1976 (one of the most
cited and influent paper in computer science (rank 36), see here (at http://bit.csc.lsu.edu/˜chen/display.html)). Some
other references can be found at the end of this chapter.

Models may be specified in one of two equivalent formats – in python or in XML. Both ways are detailed in this
chapter. The next section presents the sample models used in this manual. Section 2.2 then reviews the main concepts
of Entity-Relationship Modelling, then each element in a model are examined in details.

The two sections coming after describe how such models map onto, respectively, the python description, or PyModel
(sect. 2.4), and the XML description (sect. 2.5).

Section 2.6 gives some answers to common design-related questions.

Last, section 2.7 presents the tools that help you design and verify the models, and derive from them db-schema and
python code.

Some included tools may help you with the design and management of your models: the ZModelizationTool (for
Zope) or, alternatively, a collection of command-line scripts. Thus, the easiest way to define a model would be to use
the ZModelizationTool inside a Zope instance. However, you do notneeda Zope instance to design models, as both
PyModels and XML models may be designed in your favorite editor.

Both tools includes some validation logic, so that the common mistakes made when designing a model are identified.

2.1 Sample models used in this manual

We expose here the two models that we will use as examples in this manual.

Both models ”AuthorBooks” and ”StoreEmployees” are models used in the test units shipped with the framework.
You’ll find the associated packages in directory ‘Modeling/tests/testpackages’.

Notations: UML.

5

2.1.1 Model: AuthorBooks

+-----------+ 0,1 0,* +-------+
Writer	<-author----------books-->	Book
-----------	(nullify) (cascade)	-------
lastName		title
firstName		price
age	0,1 +-------+	
birthday	<-pygmalion--+	
+-----------+ (nullify) |

| |
+--------------------+

Note: Notations(cascade)and(nullify) refer to the rule that should be applied when an object is deleted. Here, the
deletion of a book removes its reference in its Writer’sbooks relation, while the deletion of an author triggers the
deletion of all its books in cascade. For a full explanation, please refer to section 2.3.4.

2.1.2 Model: StoreEmployees

+---------+ 0,* 0,1 +-----------+
Address	<-toAddresses----toEmployee->	Employee
---------	(cascade) (deny)	-----------
street		lastName
zipCode	+-------------	firstName
town		+-----------+
+---------+ | ˆ

| / \
+-----------+ 0,* | T
| Holidays |<-holidays---+ |
|-----------| (cascade) +--------------+
| startDate | | |
| endDate | +-----------+ +------------+
+-----------+ | Executive | | SalesClerk |

|-----------| |------------|
+-------+ 0,1 0,* | lastName | | lastName |
Mark	<-marks------executive->	firstName		firstName
-------	(cascade) (nullify)	age		age
month		birthday		birthday
mark	+-----------+ +------------+			
+-------+

6 Chapter 2. Entity-Relationship Models

2.2 Concepts

In this section we give a general idea on the Models and their elements. The details for the different parameters will
be reviewed in detail in the next section.

E.-R. Modelling defines:

Entities: they map one-to-one with classes. An Entity holds all informations needed to make the instances persistent,
including: Attributes, Relationships, and other informations (such as the name of the DB’s table in which
instances’ values are ultimately stored)

Attributes: they can be of two kinds. Some map the attributes/fields of your classes to their column’s name in their
Entity’s table, others have no existence at all at the object-level: they are artifacts, such as ”primary keys” or
”foreign keys”, needed to design a relational database schema.

Relationships: relationships are, rougly speaking, half of an association. Relationships are defined in Entities. A
Relationship is uni-directional, from the entity that holds it (the ”source entity”) to the ”destination entity”. A
Relationship may have an inverse relationship. A relationship also holds its cardinality, and is said to belong to
one of these two categories:to-oneandto-many relationships. Let’s illustrate this with a little example.

Say you have two entities,Book andWriter (this refers to the model definied in section 2.1.1); these two
entities are in relation to each other: theBook defines a relationship namedtoAuthor , pointing toWriter ,
andWriter has in turn a relationshiptoBooks pointing toBook . Each of these relationships is the inverse
of the other. The former,toAuthor , designates e.g. exactly 1 author, while the second one designates 0 orn
books, withn being a positive integer.

In this case1 is said to be both the lower and the upper bounds of thetoAuthorrelationship’s multiplicity, while
for toBooks0 is the lower bound and* (meaning: any positive number of books) is the upper bound. The former
is said to be a to-one relationship (1 is the upper bound), the latter, a to-many relationship (the multiplicity’s
upper-bound is –strictly– greater than 1).

Joins: Joins have no meaning at the object-level; you will not explicitly see or even define Joins in PyModels, or in the
ZModelization tool interface –they are defined along with the relationship’s definition. Joins are, again, artifacts
defininghow a relationship is made persistent into a database; more explicitly, a join has a source attribute
and a destination attribute, both of which have no meaning at all at the object-level (they are not class’ fields).
Typically, a to-one relationship has Joins joining foreign keys to primary keys, while to-many relationships
have joins whose source attributes are primary keys and destination attributes are foreign keys (see ”Designing
relationships”, below, for details)

Additionally, we define Models and Model Sets.

A model groups entities together. It holds specific informations about the underlying database itself, such as the
connection dictionary, and it gathers Entities which are to be made persistent within the same database.

Model Sets are, as the name suggest it, sets of models. The Framework itself only deals with oneModelSet ,
accessible by callingdefaultModelSet() on moduleModeling.ModelSet .

2.3 Full description

2.3.1 Model

A model element may have the following attributes:

name: The name of a model is just informative and is not used at run-time. It is however required. Note that models
are intended to be loaded within a Model Set at runtime, and that a model set identifies its models by name.
Hence, two models having the same name cannot be loaded at the same time within the framework.

2.2. Concepts 7

adaptorName : the name of the database-adaptor, i.e. the back-end that you want to use for the
entities in the model. Currently onlyMySQL, Oracle , Postgresql and SQLite (exact
spelling) are validadaptorName s (correspond respectively to the packagesMySQLAdaptorLayer ,
OracleAdaptorLayer , PostgresqlAdaptorLayer andSQLiteAdaptorLayer).

packageName : the name of the package where your classes will be dropped. This will be used when you will ask
for generation of code-skeletons for the whole model ; moreover, it implies that all classes mapped to the entities
in a model must live within the same package.

Dotted-names are supported. This is used both when the code-templates are generated and at run-time, when
objects of a certain type (entity) must be instanciated and populated with fetched values. The value stored in the
model should therefore be kept in step with your current python installation.

See also: 2.3.2, Entity’s propertiesclassName andmoduleName, and B.1, FAQ.

comment : a comment, for maintainers of the model.

connectionDictionary : this may be the full connection dictionary, as required by the Adaptor chosen above,
or a partial connection dictionary – in which case the equivalent keys will be read from the configuration file
pointed to by the the enviroment variableMDL DB CONNECTIONSCFG (see A.1).

A connection dictionary is always made of the following keys:host , database , user , andpassword . An
additional key:port allows you to specify the port number to which the database server listens.

The adaptors in the framework make a different use of each of these keys to connect to a database. For example,
the adaptor for SQLite only requires one key to be defined:database , pointing to the file containing the
database. For an exact definition of how different adaptors use the connection dictionary, please refer to their
respective documentation:

MySQL: MySQLAdaptorLayer (at ../API/Modeling-API/public/Modeling.DatabaseAdaptors.MySQLAdaptorLayer-
module.html)

Oracle: OracleAdaptorLayer (at ../API/Modeling-API/public/Modeling.DatabaseAdaptors.OracleAdaptorLayer-
module.html)

PostgresqlSQL: PostgresqlAdaptorLayer (at ../API/Modeling-API/public/Modeling.DatabaseAdaptors.PostgresqlAdaptorLayer-
module.html)

SQLite: SQLiteAdaptorLayer (at ../API/Modeling-API/public/Modeling.DatabaseAdaptors.SQLiteAdaptorLayer-
module.html)

2.3.2 Entity

An Entity corresponds to a Class in your (UML) model.

An entity may have the following attributes:

name: the name of the entity is required. It plays a fundamental role at run-time, making it possible for the framework
to make classes correspond to DB tables and vice-versa.

className : this is the name of the class bound to the current entity. This is used both when the code-templates are
generated and at run-time, when instances from a certain type are needed to be populated with fetched values.
The value stored in the model should therefore be kept in sync. with your current python installation. See also:
2.3.1, Model’s’packageName’ property,’moduleName’ (below), and B.1,”FAQ”.

moduleName: this is the name of the module where the class is defined. This is used both when the code-templates
are generated and at run-time, when objects a certain type needs to be instanciated and populated with fetched
values. The value stored in the model should therefore be kept in step with your current python installation.

See also: 2.3.1, Model’s’packageName’ property,’className’ (above), and B.1,”FAQ”.

If it is not provided, it defaults to theclassName , since a class is often declared in a module which has the
same name as its class.

8 Chapter 2. Entity-Relationship Models

externalName : this is the name of the underlying table in the database. A common habit con-
sists in deriving it from the class name in a consistent way, for example, classBook be-
comes externalName BOOK , and RegularCustomer becomes REGULARCUSTOMER. (cf.
Modeling.Entity.externalNameForInternalName() and its1)

parentEntity : you can choose a parent entity (a *super class*) for your entity. Inheritance implies more than
simply setting this tag, please refer to section 2.6.4 for a complete discussion.

primaryKeys : see the next subsection.

typeName , isAbstract , isReadOnly not used for now.

comment : a comment, for maintainers of the model.

Before detailing attributes and relationships, contained in entities, we first describe the special primary key attribute.

Primary keys

Primary keys are attributes/columns that anRDBMS uses to uniquely identify every row of a table. It isrequired
that a non-abstract Entity2 defines one of its attributes to be a primary key. Within an entity you define attributes,
relationships, and primary keys as well as the attributes that are ”used for locking” (this we will not explained for
now, as it it addresses a feature,optimistic locking, that is not yet supported). However, for primary keys, you should
remember that we only supportsimple primary keys, i.e. primary keys with only one attribute; hence, please make
sure that you have one, and only one, primary-key per entity.

Entities know their primary keys. Their are defined differently in PyModels and in xml-model, see the respective
sections??and 2.5.3.

2.3.3 Attribute

An attribute can be either a class field (and a database column), or simply just a database column.

You cannot have two attributes with the same name inside a single entity, but two entities can have distinct attributes
with the same name. Similarly, you cannot have two attributes, two relationships or an attribute and a relationship that
have the same namewithin the same entity, but it is okay if they each live in a different entity.

An attribute may have the following properties:

name: the name of the attribute

type : this is the associated python type, which can be eitherstring , int 3 float or DateTime (mapping to
egenix’smxDateTime –or toDCOracle2.Timestamp). You should keep theexternalType (described
below) and the python type in sync (pythonstring : SQLCHAR, VARCHARor TEXT4, int : SQL INTEGER,
etc.).

isClassProperty : indicates whether the Attribute correspond to a class’ attribute. An example would be anid
column serving as the primary key.

isRequired : indicates whether the attribute ismandatory, i.e. if it can have a value ofNone. If checked, this
will be enforced both by the validation mechanism included in the frameworkAND by the database since the
corresponding attribute will be created with a SQL statement indicatingNOT NULL.

1as defined in module Entity , see documentation (at http://modeling.sf.net/API/Modeling-API/public/Modeling.Entity-
module.html#externalNameForInternalName)

2abstract entities are not supported yet
3Note that python typesint andlong int are treated the same way. This is due to different DB-adaptors having different behaviours –some

can also have a ”non-deterministic” behaviour: sometimes returningint , sometimeslong int , for the same db-field and the same value (e.g.
42); anyway it sounds reasonable to considerint andlong int as equivalent within the framework’s core.

4if you db-server supportsTEXT

2.3. Full description 9

columnName the name of the column in the entity’s DB table

externalType : the SQL type to which this attribute should be mapped. The supported SQL datatypes depend on
the adaptor, please refer to their documentation for details:

• MySQL: MySQLAdaptorLayer (at http://modeling.sourceforge.net/API/Modeling-
API/public/Modeling.DatabaseAdaptors.MySQLAdaptorLayer-module.html)

• Oracle: OracleAdaptorLayer (at http://modeling.sourceforge.net/API/Modeling-
API/public/Modeling.DatabaseAdaptors.OracleAdaptorLayer-module.html)

• PostgresqlSQL: PostgresqlAdaptorLayer (at http://modeling.sourceforge.net/API/Modeling-
API/public/Modeling.DatabaseAdaptors.PostgresqlAdaptorLayer-module.html)

• SQLite: SQLiteAdaptorLayer (at http://modeling.sourceforge.net/API/Modeling-
API/public/Modeling.DatabaseAdaptors.SQLiteAdaptorLayer-module.html)

precision , scale , width : depending on theexternalType , you may have to specify one or more of these
elements to fully define the SQL datatype. Refer to any SQL reference manual for details (Postgresql 7.3 devel.
documentation, chapter3: Data types is a good starting point).

Note: The fieldwidth is used at runtime when validating a string attribute’s value (see 3.3, “Validation”),
before objects are saved in the database. SQL data typesCHARandVARCHARrequire thatwidth is specified;
on the other hand,TEXT–when supported by the database– does not accept that width is set. If you set it on an
attribute, it will be ignored when the database schema is generated (i.e. aTEXT field my text with width=30
won’t be declared asTEXT(30) , but simply asTEXT), but it will be checked at runtime and validation for
this attribute will fail if its value’s length exceeds the given width. Note that the same goal can be achieved by
writing a specific validation method for the attribute (see 3.3.2).

defaultValue : use this field to assign a default value to the class’ attribute. Note that this is only used when
python code is generated from a model. You enter it as a string, it will be converted to the correct type when the
model is loaded.

Conversion details: an empty string converts to integer:0, float: 0.0 , string: ’’ ; special string value’None’
evaluates toNone for type string, and is invalid otherwise.

displayLabel : not used by the framework, but you can consider it valuable to fill it in and use it in your own
applications (see also section 7 describing how a model can be introspected).

comment : a comment, for maintainers of the model.

usedForLocking : Unused yet, reserved field.

This flag will be used when optimistic locking is implemented. It will indicate which attributes optimistic
locking should check when it is about to save changes: if value for attributelastname has changed and
usedForLocking is set for that attribute, then under the optimistic locking policy saveChanges() will raise;
if the flag is unset, the attribute will be silently overriden (for example, you probably won’t mark an object’s
timestamp as used for locking).

Primary keys

A primary key is an attribute that:

• is identified as a primary key in its entity (see 2.3.2),

• is required,

• is generally not defined as a class property (see B.1 for details).

10 Chapter 2. Entity-Relationship Models

Foreign keys

A foreign key is an attribute that:

• is used in a relationship’s source or destination attributes (detailed in the next section)

• should notbe defined as a class property (see B.1 for details).

2.3.4 Relationship

A relation is attached to an entity, and describes how an entity is related to another one.

Two kinds of relationships can be defined:simple andflattened relationship. However flattened relationshipsare not
supported/tested yet.

Simple relationships join their (source) entity to a destination entity.

A relation may have the following properties:

name: the name of the relationship, unique within the entity.

deleteRule : this specifies how the object should react when it is deleted. Four options are possible options:
NULLIFY , DELETE DENY, DELETE CASCADEandDELETE NOACTION. We will use the model Author-
Books defined in section 2.1.1, with entitiesWriter andBooks , to highlight the differences between those 4
values:

• if Book ’s relationshiptoAuthorhas the delete ruleDELETE NULLIFY , then when a book is deleted it is
automatically removed from the corresponding author’stoBooksrelationship.

• If Author ’s relationshiptoBookshas the delete ruleDELETE DENY, then if an author is marked for
deletion while it is still in relation with books, the deletion will be denied when you try to make it persistent.

• If Author ’s relationshiptoBookshas the delete ruleDELETE CASCADE, then the deletion of an author
will automatically delete the related books as well.

• You can also instructs the framework not to take any actions when an object is deleted, with respect to
its relationships. In this case, you use the delete ruleDELETE NOACTION. This is however quite an
advanced setting and should be used with great care, since inappropriate use of this setting can result in
dangling references in your databases.

This will be enforced when an object is inserted/updated or when it is deleted. See sections 4.4 and 4.6 for
further details.

isClassProperty : tells whether the Relationship’s key (i.e. its name, for example:toBooks) is part of the class’
API. It should be set in most cases.

multiplicityLowerBound , multiplicityUpperBound : the multiplicty lower bound of a relationship de-
fines the minimum number of objects that should be in relation. If the lower bound is zero, none are required:
this is anoptionalrelationship; if the lower bound is one or more, this is amandatoryrelationship.

The multiplicity upper bound defines the maximum allowed number of objects in relations. It can be any positive
number, given that it is always greater or equal than the lower bound. As a special exception, values-1 (minus
one) or’*’ serve to indicate an unconstrained upper bound.

The exact definition of to-one and to-many relationships (see 2.2) are then: to-one relationship:
multiplicityUpperBound<=1 , to-many relationship:multiplicityUpperBound>1 .

destinationEntity : designates the name of the destination entity.

joinSemantic : the join’s sematic can be either:

• (default) Inner join

2.3. Full description 11

• Full outer join

• Left outer join

• Right outer join

displayLabel : same as for Attributes, above.

comment : a comment, for maintainers of the model.

The full definition of a relationship implies that it defines at least onejoin. However, this will not appear in PyModels,
just in xml models. It’s not really part of Entity-Relationship Modelling, it is just a mean to identify the correspondance
between primary and foreign keys that defines a relationship. For this reasons, we will wait until section 2.5.5 to define
them.

See also:

• section 2.6.2, which describes how relationships should be designed, and why.

• section 2.3.3, which discusses namespace issues for relationships and attributes.

12 Chapter 2. Entity-Relationship Models

2.4 PyModels

Now that we know the different components of a model, it is time to examine how they can be practically defined. This
section examines a python definition of a model, and the next section will show how this can be done equivalently in
a xml-file.

A PyModel is a python module that defines a variablemodelthat is of typePyModel.Model . Objects of typeModel
collect all information about their entities, as a list of objects of typeEntity . Similarly, entities collect objects
defining attributes and relationships. Amodelinstance may also define bi-directional relationships as associations.
The python classes for each of these is described below. To reduce boilerplate code, PyModels allow defaults to be
specified for all values. Furthermore, sub-types for frequently used constructs are provided, and others may of course
be defined as necessary.

2.4.1 Organization of this chapter

The next section, 2.4.2, will give a full example of a PyModel.

Section?? will then discuss defaults: what they are, and how they will be changed. It should be read before referring
to the components’ details, since it explains important things that won’t be repeated afterwards.

Then, for each component of a model (Model , Entity , etc.), a comprehensive list of available properties will be
given, including their default values. These properties are those we saw in section 2.3. We suppose here that the
content of this section is known, so if you need details about the meaning and effects of some component’s property,
please refer to the component’s detailed description, above.

Last, please note that the section describing Models (2.4.5) exposes in details how these properties can be set; this
information will not be repeated in the sections coming afterwards.

2.4.2 A sample PyModel

Before dealing with all the details, here is an overview of a PyModel. Note the theid default property for entities, as
well as the predefinedAttribute sub-types,APrimaryKey andAString .

2.4. PyModels 13

from Modeling.PyModel import *

Set preferred defaults for this model (when different from
standard defaults, or if we want to make things explicit)

AFloat.defaults[’precision’] = 10
AFloat.defaults[’scale’] = 2
AString.defaults[’width’] = 40

Association.defaults[’delete’]=[’nullify’, ’nullify’]

Entity.defaults[’properties’] = [
APrimaryKey(’id’, isClassProperty=0, isRequired=1, doc=’PK’)

]

_connDict = {’database’: ’AUTHOR_BOOKS’}
model = Model(’AuthorBooks’,adaptorName=’Postgresql’, connDict=_connDict)
model.version=’0.1’
model.entities = [

#
Entity(’Book’,

properties=[AString(’title’, isRequired=1, columnName=’title’),
AFloat(’price’),

],
),

Entity(’Writer’,
properties=[AString(’lastName’,isRequired=1, width=30,

displayLabel=’Last Name’,),
AString(’firstName’, displayLabel=’First Name’,),
AInteger(’age’, displayLabel=’Age’,),
ADateTime(’birthday’, usedForLocking=0,

displayLabel=’birthday’,),
]

),
]

model.associations=[
Association(’Book’, ’Writer’,

relations=[’author’, ’books’],
delete=[’nullify’, ’cascade’]),

Association(’Writer’, ’Writer’,
relations=[’pygmalion’, None],
delete=[’nullify’, None]),

]

A PyModel is typically made of two parts: a first part sets the defaults, then the second one defines the model.
Defaults helps you keep the model definition tidy, by removing the repetitive parts from the model definition itself; in
this example, the defaults add a primary key to each entity, sets thewidth for strings, etc.

2.4.3 Defaults

In the coming description of the components of a model, you’ll see that every possible property is assigned a default
value.

This default value will be used if you omit it in your definition. For example, a componentAString representing a
string attribute has a default value of255 assigned to itswidth . This default value may, or may be not, what you
need. To avoid the unnecessary overhead of overwriting the defaults in each componentAString , you can set a
different default for one, or more, of its properties:

AString.defaults[’width’]=30
AString.defaults[’externalType’]=’TEXT’

14 Chapter 2. Entity-Relationship Models

This is a general mechanism that you can use for every single property defined by a component, simply by changing
the corresponding entry in the component class’s dictionarydefaults .

2.4.4 Model

A model defines the following properties:

Prop. Type Default Comment
name string no default The name is the only mandatory ar-

guments when instanciating aModel .
Once set, it should not be changed

packageName string value ofname Dynamically
adaptorName string ’’
connDict dict {’host’: ’’,

’database’: ’’,
’user’: ’’,
’password’: ’’
}

entities sequence [] Entities for the model are appended to
this sequence.

associations sequence [] Associations are appended to this se-
quence.

doc string ’’ this is the “comment” field
version string no default currently’0.1’ –see below

Note: For details about these properties and their meaning, please refer to 2.3.1.

When instanciated, a model should supply its name:

model = Model(’AuthorBooks’)

Properties can be set at instanciation time:

model = Model(’AuthorBooks’, adaptorName=’Postgresql’)

or by direct assignment:

model.adaptorName=’Postgresql’

Model’s version

A special property, version , should be set in every PyModel, and it should be equal to
PyModel.Model.VERSION , currently’0.1’ (a string value).

Its purpose is to track changes in the PyModel mechanisms, especially to warn you when some defaults have changed.
When this happens, the file ‘MIGRATION’ shipped along with the source distribution, and located in the top-level
directory of the distribution, this file will contain details about the changes, such as: the defaults that should be
checked, how to update your existing PyModels, etc.

2.4. PyModels 15

How does this work? When a PyModel is interpreted, itsversion is checked; if they do not correspond, you will
get an exceptionPyModel.IncompatibleVersionError (a subclass ofRuntimeError).

We highly recommend that you use the literate string value ofversion and that you do not directly assign
PyModel.Model.VERSION to it; you’ll supply it as a property, like in:

>>> model=PyModel.Model(’ModelName’)
>>> model.version=’0.1’

or:

>>> model=PyModel.Model(’<ModelName>’, version=’0.1’)

This way, you are sure that you’ll be warned when the default behaviour of PyModels changes.

2.4.5 Entity

The componentEntity defines the following properties:

Prop. Type Default Comment
name string no default Thename is the only mandatory argu-

ments when instanciating aEntity .
Once set, it should not be changed

className string value ofname
moduleName string value ofname
externalName string externalNameForInternalName(name)
isAbstract int 0
isReadOnly int 0
properties sequence [] Sequence of Attribute and

Relationship objects
parent string ’’ The name of its parent entity (inheri-

tance)
typeName string ’’
doc string ’’ comment

Note: For details about these properties and their meaning, please refer to 2.3.2.

2.4.6 Attribute

Prop. Type Default Comment
name string no default The name is the only mandatory

arguments when instanciating a
Attribute . Once set, it should not
be changed

16 Chapter 2. Entity-Relationship Models

Prop. Type Default Comment
columnName string externalNameForInternalName(name)

5

type string ’int’
externalType string ’INTEGER’
isClassProperty int 1
isRequired int 0
precision int 0
scale int 0
width int 0
defaultValue None
usedForLocking int 0
displayLabel string ’’
doc string ’’ comment

Note: For details about these properties and their meaning, please refer to 2.3.3.

Every attribute can be declared as a plainAttribute object. However, the framework provides convenience sub-
classes for standard attributes:

• ADateTime for mapping dates,

• AFloat for mapping floating-point numbers,

• AInteger for mapping integers,

• andAString for mapping strings.

We now examines those subclasses and their defaults.

ADateTime

The componentADateTime redefines the following defaults:

Prop. Type Default Comment
name string no default The name is the only mandatory

arguments when instanciating a
ADateTime . Once set, it should not
be changed

type string ’DateTime’
externalType string TIMESTAMP Be warned: not all database supports

TIMESTAMP. If this is the case, you’ll
probably have to redefine this default
value in your PyModel. Discussion on
supported SQL datatypes can be found
at section 2.3.3.

defaultValue None
usedForLocking int 1

5as defined in moduleEntity , see externalNameForInternalName (at http://modeling.sf.net/API/Modeling-API/public/Modeling.Entity-
module.html#externalNameForInternalName)

2.4. PyModels 17

Note: For details about these properties and their meaning, please refer to 2.3.3.

AFloat

The componentAFloat redefines the following defaults:

Prop. Type Default Comment
name string no default Thename is the only mandatory argu-

ments when instanciating aAFloat .
Once set, it should not be changed

type string ’string’
externalType string ’NUMERIC’
precision int 15
scale int 5
defaultValue 0.0
usedForLocking int 1

Note: For details about these properties and their meaning, please refer to 2.3.3.

Of course, you can redefine the defaults forAFloat in your PyModel to fit your needs.

AInteger

The componentAFloat redefines the following defaults:

Prop. Type Default Comment
name string no default The name is the only mandatory

arguments when instanciating a
AInteger . Once set, it should not be
changed

type string ’int’
externalType string ’INTEGER’
defaultValue 0
usedForLocking int 1

Note: For details about these properties and their meaning, please refer to 2.3.3.

AString

The componentAString redefines the following defaults:

18 Chapter 2. Entity-Relationship Models

Prop. Type Default Comment
name string no default Thename is the only mandatory argu-

ments when instanciating aAString .
Once set, it should not be changed

type string ’string’ No matter whether you
run python2.1 (where
type(’’). name ==’string’)
or python2.2 (where
type(’’). name ==’str’),
you should always use ’string’ for a
character type.

externalType string ’VARCHAR’
width int 255
defaultValue ’’
usedForLocking int 1

Note: For details about these properties and their meaning, please refer to 2.3.3. Of course, you can redefine the
defaults forAString in your PyModel to fit your needs. For example, if you prefer to useTEXT, you’ll probably
add this to your PyModel:

AString.defaults[’externalType’] = ’TEXT’
AString.defaults[’width’] = 0

APrimaryKey

The componentAPrimaryKey redefines the following defaults:

Prop. Type Default Comment
name string no default The name is the only mandatory

arguments when instanciating a
APrimaryKey . Once set, it should
not be changed

isClassProperty int 0
isRequired int 1 You should not change this default, nor

overwrite it: a primary key should be
mandatory.

defaultValue None if
isClassProperty
is false,0 otherwise

doc string ’Primary Key’
usedForLocking int 0

Note: For details about these properties and their meaning, please refer to 2.3.3.

Warning: If you want to make your primary keys class properties, please be sure to read the dedicated ”FAQ” entry
(B.1).

2.4. PyModels 19

Every entity must define a primary key. However, most of the times, you do not want to explicitly declare a primary
key in each of your entities, since they’ll basically be the same. In this case, you’ll simply add a primary key to the
Entity ’s defaults:

Entity.defaults[’properties’] = [
APrimaryKey(’id’, isClassProperty=0, isRequired=1, doc=’PK’)

]

Every declared entity will then automatically get its own primary key –a clone of the default one.

AForeignKey

The componentAFloat redefines the following defaults:

Prop. Type Default Comment
name string no default The name is the only mandatory

arguments when instanciating a
AForeignKey . Once set, it should
not be changed

isClassProperty int 0
isRequired int 0
defaultValue None
doc string ’Foreign Key’
usedForLocking int 0

Note: For details about these properties and their meaning, please refer to 2.3.3.

Warning: Foreign keys should not be marked as class properties. For a full discussion on this topic, please refer to
the dedicated ”FAQ” entry (B.1).

2.4.7 Relationship

Relationships can be declared in two different manners:

• you can declareRToOneandRToMany relationships, joining an entity to an other one. Each of these objects
defines a directional relationship, from a source entity (this is the entity where the relationship is defined) to a
destination entity (pointed to by the object’s fielddestination , see below).

• Or, instead of declaring two directional relationships, each being the inverse of the other, you can also declare
a objectAssociation which gives you the opportunity to declare a relationship and its inverse in a signle
python statement.

In the next section, we’ll see the defaults ofBaseRelationship ; while it’s not a pymodel componentper se,
it defines the defaults for all other component defining relationships:RToOne (cf.2.4.7),RToMany (cf.2.4.7) and
Association (cf.2.4.8).

BaseRelationship

A BaseRelationship describes how two entities relate to each other. It has the following attributes:

20 Chapter 2. Entity-Relationship Models

Prop. Type Default Comment
name string no default The name is the first mandatory

argument when instanciating a
BaseRelationship . Once set, it
should not be changed

destination string no default The destination entity’sname is the
second mandatory argument when in-
stanciating aBaseRelationship .
Once set, it should not be changed

delete string ’nullify’
isClassProperty int 1
multiplicity sequence [0,1]
joinSemantic int 0 see below
src string ’’ source attr.’s name
dst string ’’ destination attr.’s names
displayLabel string ’’
doc string ’’
inverse string ’’ a valid relationship’s name in the desti-

nation entity –see 2.4.7, ”Inverse rela-
tionships” for a full discussion.

You’ll never need to use aBaseRelationship ; in fact, it’s not even legal in a PyModel. Instead, you’ll declare
RToOne (2.4.7) andRToMany (2.4.7) objects; or even better, you’ll useAssociation (2.4.8) objects to create
both a relationship and its inverse in a single declaration.

We presented it here because all three elementRToOne, RToMany and Association use the
BaseRelationship ’s defaults for their own defaults (and override some of them).

Join semantic

The possible values for the attributejoinSemantic , and their respective meaning are:

• 0: Inner join

• 1: Full outer join

• 2: Left outer join

• 3: Right outer join

RToOne

RToOne objects describe a to-one relationship from anEntity to another. It derives fromRelationship and
overrides the following defaults:

Prop. Type Default Comment
name string no default Thename is the only mandatory argu-

ments when instanciating aRToOne.
Once set, it should not be changed

multiplicity sequence [0,1]
joinSemantic int 0 see 2.4.7 for possible values

2.4. PyModels 21

(All other defaults areBaseRelationship ’s ones, cf.2.4.7)

Minimally, a RToOneneeds aname and a the name of the destination entity,destination .

Source and destination attributes

Attributessrc anddst , identifying source and destination attributes, are automatically calculated if they are not
supplied:

• dst is the primary key of the destination entity identified by its name in attributedestination .

• src is calculated from the destination entity’s name stored in the relationship’sdestination attribute. It is
a string like: ’fk<sourceEntityName>’ , possibly followed by a integer (such as in’fkEmployee1’)
if the name already exists in the destination entity. In fact, a PyModel does more than just computing a name: it
also automatically creates the corresponding foreign key in the source entity.

For example, a pymodel containing:

self.model.entities = [
Entity(’Employee’,

properties=[RToOne(’toStore’, ’Store’),
...
]

automatically bindsdst to the destination entity’Store’ ’s primary key, and creates aAForeignKey
named’fkStore’ in the source entity’Employee’ (unless such a property –either an attribute or a
relationship– already exists with this name, in which case it uses the first unused name among’fkStore1’ ,
’fkStore2’ , etc.

Last, the’inverse’ field of aRToOne(which designates the inverse relationship defined in the destination
entity) has some effect in the automatic generation ofAForeignKey : please refer to 2.4.7 for a full discussion
on this topic.

Of course, you can specify your own source and destination attributes. In this case, it is requires that both are supplied,
and that they corrspond to attributes (resp.AForeignKey andAPrimaryKey attributes) explicitly declared in the
source/destination entities.

RToMany

RToOneobjects describe a to-many relationship from anEntity to another. It derives fromRelationship and
overrides the following defaults:

Prop. Type Default Comment
name string no default The name is the only mandatory

arguments when instanciating a
APrimaryKey . Once set, it should
not be changed

multiplicity sequence [0, None] None meansunconstrained: no upper
limit

joinSemantic int 0 see 2.4.7 for possible values

22 Chapter 2. Entity-Relationship Models

(All other defaults areBaseRelationship ’s ones, cf.2.4.7)

Minimally, a RToManyneeds aname and a the name of the destination entity,destination .

Source and destination attributes

Attributessrc anddst , identifying source and destination attributes, are automatically calculated if they are not
supplied. The rules are the same than the ones given above forRToOne, you just need to swap name’src’ /”source”
and’dst’ /”destination” in the above explanation.

As an example, suppose you have a pymodel declaring such aRToMany:

self.model.entities = [
Entity(’Store’,

properties=[RToMany(’toEmployees’,’Employee’)]
),

...
]

RToMany then automatically binds’src’ to the source entity’Store’ ’s primary key, and creates a
AForeignKey named’fkStore’ in the destination entity’Employee’ (unless such a property –either an
attribute or a relationship– already exists with this name, in which case it uses the first unused name among
’fkStore1’ , ’fkStore2’ , etc.

You’ll also want to read the section 2.4.7 for a complete explanation on how automatic binding/generation of
APrimaryKey /AForeignKey is handled when two relationships are inverse of each other.

Inverse relationships

Most of the times, aRToOnerelationship is the inverse of aRToMany. That’s why they both have a fieldinverse ,
which allows you to identify the inverse relationship.

When you define bothRToOneandRToManywith explicit source- and destination attributes (using the fields, resp.,
src anddst), a PyModel does not need this information to know that the two relationships are inverse for each other:
a simple inspection of the relationships makes it noticeable that their source/destination entity and attributes are the
same, which allows it to deduce that they are inverse to each other.

However, when you use the automatic andimplicit declaration of source and destination attributes, you must supply
the inverse keyword, otherwise you won’t get what you expect. Suppose you declare something like this:

self.model.entities = [
Entity(’Employee’,

properties=[RToOne(’toStore’, ’Store’),
]),

Entity(’Store’,
properties=[RToMany(’toEmployees’,’Employee’),

]),
]

2.4. PyModels 23

Now see what happens (we suppose here that you have read how automatic binding of source and destination attributes
is done, as described in 2.4.7):

1. the PyModel examine the firstRToOne; given that neithersrc nordst are supplied, its destination attribute is
automatically bound to theStore ’s primary key, and aAForeignKey is created, named’fkStore’ , and
assigned to the source attribute.

2. Now the PyModel examine the otherRToMany relationship. The source attribute is automatically bound to
Store ’s primary key. What about the destination attribute? As expected, a foreign key should be created then
bound; but since a attribute’fkStore’ already exists (created at the previous step), a foreign key named
’fkStore1’ is created and bound to the destination attribute.

So: two foreign keys were created in entityStore , one for each relationship defined. As a consequence, and since
the two relationships use their own foreign key, they cannot be considered as inverse to each other.

This is why you must supply theinverse attribute when designing a relationship and its inverse. When it is supplied,
the automatic generation of foreign key detects it and, rather than re-creating an other foreign key such as above in
step 2., re-uses the foreign key that was previously created in step 1. Hence, the following declaration is correct:

self.model.entities = [
Entity(’Employee’,

properties=[RToOne(’toStore’, ’Store’, inverse=’toEmployees’),
]),

Entity(’Store’,
properties=[RToMany(’toEmployees’,’Employee’,inverse=’toStore’),

]),
]

Note: It is not required that both relationships defines theinverse attribute: it is sufficient to declare it in one of
the two relationships (either theRToOneor theRToMany). However and as a general rule, we think that it makes a
pymodel clearer if you define it in both relationships, and we suggest that you do that.

2.4.8 Association

Association s are a pratical shortvut for defining a relationship and its inverse in a single python statement.

Suppose that we want to design the two relationships already discussed above between entitiesEmployee and
Store :

Employee <<-toEmployees------toStore-> Store

We could define the appropriateRToOneandRToMany objects in their respective entities. Now we can also define
them like this:

model.entities = [Entity(’Employee’), Entity(’Store’)]
model.associations = [

Association(’Employee’, ’Store’),
]

(We’ve only left in the example the necessary declarations for demonstration –the full pymodel is exposed in 2.4.2).

24 Chapter 2. Entity-Relationship Models

This automatically creates the two relationships, along with the necessay foreign key.

IMPORTANT: Association objectsalwaysdefine a to-one association from the first entity to the second entity, and
an inverse to-many relationship from the second entity to the first one.

Here is an equivalent declaration, where some of the defaults are explictly exposed:

Association(’Employee’, ’Store’,
relations=[’toStore’, ’toEmployees’],
multiplicity=[[0, 1], [0, None]],
delete=[’nullify’, ’deny’])

Here again and as a general rule, we suggest that you provide at least the names and the multiplicity of both relation-
ships, so that it is clear which one is the to-one/to-many relationship.

Now here are the defaults thatAssociation uses. As you see, it uses the same defaults thenRToOne and
RToMany:

Prop. Type Default Comment
src string no default The source entity’s name. This pa-

rameter is mandatory when creating a
Association

dst string no default The destination entity’s name. This pa-
rameter is mandatory when creating a
Association

multiplicity sequence [[0,1], [0,None]
]

The multiplicity for each rel.

relations sequence [’to<Dst>’,
’to<Src>s’]

The names for the relationships

keys sequence [None, None] The two attributes’names that
both relationships refer to as
source/destination attributes

delete sequence [
RToOne.defaults[’delete’],
RToMany.defaults[’delete’]
]

the delete rule for each rel.

isClassProperty sequence [
RToOne.defaults[’isClassProperty’],
RToMany.defaults[’isClassProperty’]
]

Whether each rel. is a class property

joinSemantic sequence [
RToOne.defaults[’joinSemantic’],
RToMany.defaults[’joinSemantic’]
]

The join semantic for each rel.

displayLabel sequence [
RToOne.defaults[’displayLabel’],
RToMany.defaults[’displayLabel’]
]

thedisplayLabel for each rel.

doc sequence [
RToOne.defaults[’doc’],
RToMany.defaults[’doc’]
]

A comment assigned to each rel.

2.4. PyModels 25

Last, anAssociation can be used to define a directional association (where only one of the two relationships is
defined), by setting one of therelations to None, such as in:

Association(’Writer’, ’Writer’,
relations=[’pygmalion’, None],
delete=[’nullify’, None],
keys=[’FK_Writer_id’, ’id’]),

(extracted from ‘Modeling/tests/testPackages/AuthorBooks/pymodel AuthorBooks.py’, corresponding to the model de-
fined in 2.1.1)

26 Chapter 2. Entity-Relationship Models

2.5 XML model

2.5.1 Overview of the xml

Before going into details, here is the skeleton of an xml-model:

<?xml version=’1.0’ encoding=’iso-8859-1’?>
<model ...>

<entity ...>
<primaryKey attributeName=’...’/>
<attribute .../>
<relation ...>

<join .../>
</relation>

</entity>
<entity ...>

...
</entity>

</model>

A complete template is provided at the end of the chapter, in section 2.5.6.

Each of the xml elements<model> , <entity> etc. has its own set of attributes, as indicated by the ellipses found
in the xml elements above. The following subsections describe each element in detail.

Note: every value associated to a xml attribute should be a string. It is automatically converted to the right type when
the model is loaded.

2.5.2 Model

We already know that an xml-model holds one and only one model;<model> is, hence, the root element of the
model.

The<model> element has the following attributes:

<model
name = ’’ -- unique per model set
packageName = ’’ -- generate classes into, and import from, this package
adaptorName = (MySQL | Oracle | Postgresql | SQLite) : Postgresql -- a supported database adaptor
comment = ’’ -- a comment
connectionDictionary = "{}" -- string representation of a python dictionary

>

All these attributes are described in section 2.3.1.

The connection dictionary should be a valid python expression for dictionaries; when other database adaptors come
up for other database, they will be required to accept the very same set of required keys, namelyhost , database ,
user , andpassword .

2.5.3 Entity

An Entity corresponds to a Class in your (UML) model.

Before detailing attributes and relationships, contained in entities, we first describe the special primary key attribute.

2.5. XML model 27

Primary keys

You define a primary key like this:

<entity ...>
<primaryKey attributeName=’...’/>
...

</entity>

The<primaryKey> tag only has one attribute,attributeName , which needs to have the same value as one the
entity’s attributes’ names. We will see how an attribute is described in the next section, however we can already tell
that an attribute used as a primary key is often defined like:

<attribute name=’id’ type=’int’
isClassProperty=’0’ isRequired=’1’
columnName=’ID’ externalType=’INTEGER’/>

Definition of an entity

The<entity> element is a child of the<model> element. It has the following attributes:

<entity
name = ’’ -- relates class to db table
className = ’’ -- python class name for this entity
moduleName = ’’ -- class is generated into, and accessed from, this module
externalName = ’’ -- db table name
parentEntity = ’’ -- name of entity to "inherit" from
typeName = ’’ -- not yet used
isAbstract = ’0’ -- not yet used
isReadOnly = ’0’ -- not yet used
comment = ’’ -- a comment

>

All these attributes are described in section 2.3.2.

2.5.4 Attribute

The<attribute> element is a child of the<entity> element. It may have the following attributes:

<attribute
name = ’’ -- class attribute name
type = (string | int | float | DateTime) : string -- python type
isClassProperty = ’1’ -- ’0’ or ’1’; attribute is also a class property
isRequired = ’1’ -- ’0’ or ’1’; cannot be null
columnName = ’’ -- database table column name
externalType = ’’ -- database type
width = ’’ -- qualifier for some values of externalType
precision = ’’ -- qualifier for some values of externalType
scale = ’’ -- qualifier for some values of externalType
defaultValue = ’’ -- class attribute default value
displayLabel = ’’ -- text label to use in applications
comment = ’’ -- a comment

/>

All these attributes are described in section 2.3.3.

28 Chapter 2. Entity-Relationship Models

2.5.5 Relationship

The<relationship> element is a child of the<entity> element. It has the following attributes:

<relation
name = ’’ -- relation name
deleteRule = (0,DELETE_NULLIFY | 1,DELETE_DENY | 2,DELETE_CASCADE |

3,DELETE_NOACTION) : 0 -- behaviour when object is deleted
isClassProperty = ’1’ -- ’0’ or ’1’; relation is also a class property
multiplicityLowerBound = (int > -1) : 0
multiplicityUpperBound = (int > -1 | -1,*) : 1

-- -1 or * indicate unconstrained upper bound
destinationEntity = ’’ -- name of destination entity
joinSemantic = (0,Inner | 1,FullOuter | 2,LeftOuter | 3,Right Outer) : 0
displayLabel = ’’ -- text label to use in applications
comment = ’’ -- a comment

>
</relation>

All these attributes are described in section 2.3.4.

Here are the possible values for these attributes, and their meaning:

isClassProperty : • code’0’: DELETE NULLIFY

• ’1’ : DELETE DENY

• ’2’ : DELETE CASCADE

• ’3’ : DELETE NOACTION

Note: in future it will be possible to enter the real names (such asDELETE CASCADE), not only their numerical
value (defined in moduleClassDescription .

isClassProperty : Default value:’1’ (Yes). ’0’ stands forNo.

multiplicityLowerBound , multiplicityUpperBound : You can enter’*’ or ’-1’ for an uncon-
strained upper bound.

Default values:’0’ for lower bound,’1’ for upper bound.

joinSemantic : Possible values and their respective meaning are:

• ’0’ : (default) Inner join

• ’1’ : Full outer join

• ’2’ : Left outer join

• ’3’ : Right outer join

(as defined in moduleRelationship)

The full definition of a relationship implies that it defines at least onejoin.

See also:

• section 2.6.2, which describes how relationships should be designed, and why.

• section 2.3.3, which discusses namespace issues for relationships and attributes.

2.5. XML model 29

Joins

A join has no equivalent in the object model. In fact, it is one the rare elements (such as the properties defined by tags
<primaryKey> and<attributesUsedForLocking>) that only describe the underlying database schema. A
full discussion on how relationships should be modeled can be found in the next section. For the moment, we will
only describe the xml element<join> .

We already know the every relationship should have at least one join. The exact definition of a join goes like this:

<relation ...>
<join sourceAttribute=’’ destinationAttribute=’’/>

</relation>

The<join> element requires the following two attributes:

sourceAttribute : the name of an attribute belonging to the enclosing relationship’s entity.

destinationAttribute : the name of an attribute belonging to the destination entity pointed by the relationship,
i.e. the entity given by"../relation/@destinationEntity" .

It is formatted this way:

<relation
name = ’’ -- relation name
...
destinationEntity = ’’ -- name of destination entity

>
<!-- unordered content: (join) -->
<join

sourceAttribute = ’’ -- name of source attribute, in enclosing entity
destinationAttribute = ’’ -- name of target attribute, in ../@destinationEntity

/>
</relation>

30 Chapter 2. Entity-Relationship Models

2.5.6 Full format of an xml-model

<?xml version=’1.0’ encoding=’iso-8859-1’?>
<model

name = ’’ -- unique per model set
packageName = ’’ -- generate classes into, and import from, this package
adaptorName = (MySQL | Oracle | Postgresql | SQLite) : Postgresql -- a supported database adaptor
comment = ’’ -- a comment
connectionDictionary = "{}" -- string representation of a python dictionary

>
<!-- unordered content: (entity*, relation*) -->

<entity
name = ’’ -- relates class to db table
className = ’’ -- python class name for this entity
moduleName = ’’ -- class is generated into, and accessed from, this module
externalName = ’’ -- db table name
parentEntity = ’’ -- name of entity to "inherit" from
typeName = ’’ -- not yet used
isAbstract = ’0’ -- not yet used
isReadOnly = ’0’ -- not yet used
comment = ’’ -- a comment

>
<!-- unordered content: (primaryKey, attributesUsedForLocking*, attribute*, relation*) -->

<primaryKey
attributeName = ’’ -- name of an attribute in this entity

/>
<attributesUsedForLocking

attributeName = ’’ -- name of an attribute in this entity
/>
<attribute

name = ’’ -- class attribute name
type = (string | int | float | DateTime) : string -- python type
isClassProperty = ’1’ -- attribute is also a class property
isRequired = ’1’ -- cannot be null
columnName = ’’ -- database table column name
externalType = ’’ -- database type
width = ’’ -- qualifier for some values of externalType
precision = ’’ -- qualifier for some values of externalType
scale = ’’ -- qualifier for some values of externalType
defaultValue = ’’ -- class attribute default value
displayLabel = ’’ -- text label to use in applications
comment = ’’ -- a comment

/>
<relation

name = ’’ -- relation name
deleteRule = (0,DELETE_NULLIFY | 1,DELETE_DENY | 2,DELETE_CASCADE |

3,DELETE_NOACTION) : 0 -- behaviour when object is deleted
isClassProperty = ’1’ -- relation is also a class property
multiplicityLowerBound = (int > -1) : 0
multiplicityUpperBound = (int > -1 | -1,*) : 1

-- -1 or * indicate unconstrained upper bound
destinationEntity = ’’ -- name of destination entity
joinSemantic = (0,Inner | 1,FullOuter | 2,LeftOuter | 3,Right Outer) : 0
displayLabel = ’’ -- text label to use in applications
comment = ’’ -- a comment

>
<!-- unordered content: (join) -->

<join
sourceAttribute = ’’ -- name of source attribute, in enclosing entity
destinationAttribute = ’’ -- name of target attribute, in ../@destinationEntity

/>
</relation>

</entity>
</model>

2.5. XML model 31

2.6 General guidelines and gotchas

In this section we cover some general design questions.

2.6.1 Simple models (no inheritance)

If your UML/object model has no inheritance hierarchy, the modelization of the mapping between the object world
and the relational world is quite straightforward.

Mapping classes to entities You first need to create one entity per class. You then populate each entity with the
attributes and relationships –see 2.6.2– that are in your UML model.

Each of these entity needs to have aprimary key. A primary key is typically an attribute which isnot a class property,
that is required, whose python type isinteger and SQL type (the so-calledexternal type) INTEGER. A primary
key is usually namedid but this is ultimately up to you. Primary keys should not be made class properties, and as a
consequence they won’t be accessible in the python object ; this is intended and should not be changed (see also: B.1,
”FAQ”).

For regular attributes and their properties, see 2.3.3. Note that there is no way to map a class attribute: only instance
attributes can be used here.

For relationships, you will need to have your primary keys and someforeign keysprepared: section 2.6.2 gives the
details of their definition.

2.6.2 Designing relationships

A relationship and its inverse relationship (when defined) define an association. If a relationship has no inverse, the
corresponding association is said to be uni-directional, otherwise it is bi-directional. Associations can be of the three
kinds, with the following constraints:

One-to-many this is the most common case. To define a one-to-many relationship between the entitiesWriter and
Book , like this:

+--------+ +--------+
| Writer | | Book |
+--------+ +--------+
| | | |
| toBooks|<-------->>|toAuthor|
+--------+ +--------+

(extracted from the full model defined at section 2.1.1) you need to perform the following steps:

1. Both entities should (already) have a primary key defined, e.g.id (see 2.6.1). Theid will use the python
type int and the SQL typeINTEGER.

2. Define a foreign key inBook , i.e. an attribute, sayFK Writer id , which isnot a class property and is
mapped to the python type ’int’ and the SQL typeINTEGERas well.

3. Define a relationshiptoBooksin Writer , joining the primary keyid to the destination entityBook ’s
foreign keyFK Writer id , with a multiplicity’s upper bound> 1, say,* .

4. Define a relationshiptoAuthor in Book , joining the foreign keyFK Writer id to the Writer ’s
primary keyWriter.id , with a multiplicity’s upper bound equal to 1.

32 Chapter 2. Entity-Relationship Models

One-to-one One-to-one relationships should be modeled as one-to-many relationships, to which you add custom
validation logic to enforce that the toMany relationship does not have more than one object in relation (in the
future we will support one-to-one relationship, by supporting propagation of primary keys)

Many-to-many While automatic handling of many-to-many relationships is not supported yet, many-to-many rela-
tionships can be modeled and used with minimal efforts. Please refer to the dedicated section 2.6.3, below.

You may want to specify an other inverse relationship than the one calculated by the framework. (Note that when
working with the ZModelizationTool, it shows you the inverse relationship it finds for a given relationship when in the
Entity’s global view. If the inverse relationship is not found or is wrong, first check that the relationships are correctly
defined.)

The way an inverse relationship is calculated is simple: the framework looks at the destination entity and searches for a
relationship whose joins have source and destination attributes corresponding one-to-one to the destination and source
attributes in the original relationship’s joins. And if this is not clear, look at the example above (step-by-step procedure
to build a one-to-many association):toBooksis the inverse relationship fortoAuthorand conversely, as expected.

If, however, the framework is not able to find the correct inverse relationship, you can force it
to use you own point of view; for a complete description of how this can be done, refer to
CustomObject.inverseForRelationshipKey() documentation string.

2.6.3 Modeling many-to-many relationships

Many-to-many relationships are notautomatically handledby the framework yet, however they can be modeled and
used with minimal efforts.

We’ll first examine how many-to-many relationships are mapped in relational database schema. Then we will give
a short example demonstrating how to do this, including the code that you’ll have to insert in your classes to handle
them.

We will use the following model as an example:

+--------+ 0,* 0,* +---------+
Person	<-persons------addresses-->	Address
--------		---------
name		street
+--------+ | town |

+---------+

General principle: the correlation table

Modeling many-to-many relationships in a relational database schema usually involves designing acorrelation table,
a table which holds the informations about the objects in the two tables,Person andAddress . Each line in the
correlation table is basically a tuple of two elements, one fromAddress and one fromPerson , so that we can tell
that if person 1 andaddress 2 appear in a single row of the correlation table, we know that those two objects
are related to each other.

Now let’s integrate the correlation table into our model:

2.6. General guidelines and gotchas 33

+--------+ 0,1 0,* +----------+ 0,* 0,1 +---------+
Person	<-person---pAs->>	PersAddr	<<-pAs------address-->	Address
--------		----------		---------
name		FKperson		street
+--------+ | FKaddress| | town |

+----------+ +---------+

where:

• PersAddr is the abbreviation for PersonAddress (the correlation table is usually named after the names of the
two tables it correlates)

• relationships namedpersonAddresses are abbreviated withpAs

To fully understand what’s going on here, let’s look at the tables themselves. Suppose tablesAddress andPerson
have 3 rows each:

SELECT * FROM Person;
id | name

--- +------
1 | p1
2 | p2
3 | p3

SELECT * FROM Address;
id | street | town

----+-----------+------
1 | street a1 |
2 | street a2 |
3 | street a3 |

Then, for the following situation:

• p1 ’s addresses are[a1, a2]

• p2 ’s addresses are[a1]

• p3 ’s addresses are[a1, a3]

The correlation table looks like:

SELECT * FROM Person_Address;
id | fk_person | fk_address

----+-----------+------------
1 | 1 | 1 # p1 <--> a1
2 | 1 | 2 # p1 <--> a2
3 | 2 | 1 # p2 <--> a1
4 | 3 | 3 # p3 <--> a3
5 | 3 | 1 # p3 <--> a1

34 Chapter 2. Entity-Relationship Models

A short example

Now that we now how many-to-many relationships are handled, we know what we should do:

1. define the correlation table as an entity in the model,

2. connect the two tables to the correlation table and back,

3. because we do not want to directly manipulate objects coming from the correlation table, we will write some
code so that we can directly access persons from a given address, and addresses from a given person;

We’ve seen in the previous how the model looks like with the correlation table. Here is the full PyModel:

from Modeling.PyModel import *

defaults
AString.defaults[’width’] = 40
Entity.defaults[’properties’] = [

APrimaryKey(’id’, isClassProperty=0, isRequired=1, doc=’PK’)
]

##
_connDict = {’database’: ’MM1’, ’user’: ’postgres’, ’host’: ’localhost’,

’password’: ’’}
model = Model(’MM1’,adaptorName=’Postgresql’,connDict=_connDict)
model.version=’0.1’
model.entities = [

Entity(’Person’,
properties=[AString(’name’,isRequired=1)]),

Entity(’Address’,
properties=[AString(’street’, isRequired=1),

AString(’town’)]),
Entity(’PersonAddress’),
]

#---
model.associations=[

Association(’PersonAddress’,’Person’,
relations=[’person’,’personAddresses’],
delete=[’nullify’,’cascade’]),

Association(’PersonAddress’,’Address’,
relations=[’address’,’personAddresses’],
delete=[’nullify’,’deny’]),

]

We just defined a new entity,PersonAddress , and two associations modeling the relationships between the corre-
lation table and the correlated ones.

Last, we’ll need to add some code in classesPerson andAddress to directly manipulate the many-to-many rela-
tionships. Since relating an object to an other one is just a matter of adding a object/a row to the correlation table, the
code is pretty straightforward.

In Person , you’ll add the following methods:

2.6. General guidelines and gotchas 35

Relationship: addresses
def getAddresses(self):

return self.valueForKeyPath(’personAddresses.address’)

def addToAddresses(self, address):
if address in self.getAddresses():

return
from PersonAddress import PersonAddress
_pa=PersonAddress() # Create an object in the correlation table
self.editingContext().insert(_pa)
self.addToPersonAddresses(_pa)
_pa.setPerson(self)
_pa.setAddress(address)
address.addToPersonAddresses(_pa)

def removeFromAddresses(self, address):
_pa=[pa for pa in self.getPersonAddresses() if address == pa.getAddress()]
if not _pa:

raise ValueError, ’Cannot find address’
Here we simply need to remove the corresponding object in the
correlation table
_pa=_pa[0]
self.removeFromPersonAddresses(_pa)
_pa.getAddress().removeFromPersonAddresses(_pa)
_pa.setAddress(None)
_pa.setPerson(None)
self.editingContext().delete(_pa)

And you’ll add the equivalent methods inAddress :

Relationship: persons
def getPersons(self):

return self.valueForKeyPath(’personAddresses.person’)

def addToPersons(self, person):
if person in self.getPersons():

return
from PersonAddress import PersonAddress
_pa=PersonAddress() # Create an object in the correlation table
self.editingContext().insert(_pa)
self.addToPersonAddresses(_pa)
_pa.setPerson(person)
_pa.setAddress(self)
person.addToPersonAddresses(_pa)

def removeFromPersons(self, person):
_pa=[pa for pa in self.getPersonAddresses() if person == pa.getPerson()]
if not _pa:

raise ValueError, ’Cannot find person’
Here we simply need to remove the corresponding object in the
correlation table
_pa=_pa[0]
self.removeFromPersonAddresses(_pa)
_pa.getPerson().removeFromPersonAddresses(_pa)
_pa.setAddress(None)
_pa.setPerson(None)
self.editingContext().delete(_pa)

Now we can normally call e.g.getAddresses or addToAddresses on aPerson object, passing aAddress
object, without caring about the details anymore.

36 Chapter 2. Entity-Relationship Models

2.6.4 How to model inheritance

When you have inheritance hierarchies in your object model, they should be correctly modeled. We present below the
three possible ways to map an inheritance hierarchy to the relational world, then we’ll see how to model these so that
they can be taken into account by the framework.

There are three typical ways to model an inheritance hierarchy into anRDBMS schema–we do not take into account
specialRDBMS functionalities, just raw relational/SQL possibilities. Among these three, only one,Horizontal Map-
ping, is supported by the framework so far.

A more complete discussion, along with figures and examples, can be found athttp://www.objectmatter.com/(at
http://www.objectmatter.com/vbsf/docs/maptool/ormapping.html),

Horizontal Mapping In this configuration, each entity stores all instance data in a single table, whatever the in-
heritance hierarchy can be. That is to say that, if classA2 inherits fromA1, they each have their own table
(respectively, tableA2 and tableA1) which stores the instance data. This configuration does not put any infor-
mation about the inheritance schema into the relational database, rather it lets the runtime do the job and take
the inheritance into account.

Vertical Mapping (not supported yet) In this configuration, the root entity has its own table. A sub-entity then defines
a table whose columns corresponds to the set of attributes that arenot inherited; inherited informations, such as
attributes or foreign keys for inherited relationships, are stored in the root entity’s table, and are retrieved using
a SQL join between the two tables.

Filtered Mapping or ”Single table” (not supported yet) In this configuration, a root entity and all its sub-entities
store their data in the same table. This table hence defines the whole set of possible attributes. To be able to
distinguish rows corresponding toA1 instances from rows corresponding toA2 instances, each entity defines a
qualifier. For example, instances ofA1 will have a type code of1 stored in the table’s column’TYPE’ , while
instances of classA2 will map to rows whose type is2.

Note: Remember the fact that the model, build in theZModelizationTool or directly in an xml-model and used
by the framework’s core, isnot a model per sebut rather amapping of an object model to a relational model. As a
consequence, you should not be surprised that, whatever mapping you choose to model a specific inheritance hierarchy,
each entity and all sub-entitiesmust define and describe all entity attributes and relationships–inherited or not.

Horizontal Mapping

(requires review)

When you use Horizontal Mapping, you should, at first, define and fully describe the classes that do not participate in
the inheritance hierarchy, then you model the root classes, then their sub-entities, etc.

The reason is that every sub-entity should describe every attributes and relationships they inherit from its parent.
TheZModelizationTool offers you the opportunity to automatically derive an sub-entity from a already defined
entity, so you don’t not have to re-declare every inherited properties by hand. If you’re designing the model outside the
tool, by directly editing the xml file for example, you’ll probably want to define the root entity first, then to copy-paste
the entire<entity> declaration and rename it with the sub-entity’s name.

Warning! During the development phase, your model will probably change often, and your root-entities are likely
to add and/or suppress attributes after you create their sub-entities. In such cases, you should be particulary careful
to propagate these modifications to the sub-entities, or things will go really wrong. You can do this, either in the
ZModelizationTool itself, or directly in the XML file with your favorite editor (be sure to import/export the
XML file from/into the ZModelizationTool before/afterwards if you’re using the tool and occasionally edit the
xml-file by hand).

You will find an example of a model defining an inheritance hierarchy in the package
Modeling.tests.testPackages.StoreEmployees .

2.6. General guidelines and gotchas 37

Vertical Mapping

Not supported yet.

Filtered Mapping

Not supported yet.

2.7 Tools

2.7.1 The ZModeler

The ZModelization is a tool to help you design a model.

It lets you create and edit the model through a web interface, that is to say that every single element being part of the
xml-model can be modified through easy-to-use web forms. It has some niceties, such as the possibility to create a
relationship and its inverse along with the foreign key if needed in a single operation, or the ability to create in a single
click a sub-entity having all of its parent’s attributes and relationships.

Last, you may validate the model, generate the database schemas and the python code for your model, just by a few
mouse clicks.

Installation To install the tool, you first need to install Zope (http://www.zope.org). Then copy the directory
‘ZModelizationTool/’ into zope’sProducts directory (located in ‘$ZOPE HOME/lib/python/’ in a brand new zope
installation6).

Run Zope, access to the zope management interface and create a ’ZModelization Tool’ where appropriate (for example,
in the root directory). That’s it.

2.7.2 Scripts

(requires review)

If you choose not to use the ZModeler and design your xml-models by hand, you may still take advantage of some
scripts to help you with the following tasks:

• ‘mdl validate model.py’: validation of an xml-model

• ‘mdl generate DB schema.py’: generation of the database-schema

• ‘mdl generate python code.py’: generation of the python code from an xml-model

Running each of the above scripts with--help will give further details.

2.8 Some References on E.-R. Modelling

• Peter P. Chen, 1976 – see. http://bit.csc.lsu.edu/˜chen/display.html

6or in the ‘Products/’ directory of your instance home –see Make your life easier with INSTANCEHOME (at
http://www.zope.org/Members/4am/instancehome) for details

38 Chapter 2. Entity-Relationship Models

• CASE* Method – Entity Relationship Modelling, Richard Barker, Addison-Welsey Publishing Company, ISBN
0-201-41696-4, 1990

• Entity-Relationship Approach: Ten Years of Experience in Information Modeling – Proceedings of the Fifth
International Conference on Entity-Relationship Approach, Dijon, France, Nov. 17-19, 1986 Edited by Stefano
SPACCAPIETRA, Noth-Holland, ISBN: 0-444-70255-5 Publishers: Elsevier Science Publishers B.V., Amster-
dam, Holland.

• Rational white paper addressing a possible extension for UML –Data Modeling Profile (at
http://www.rational.com/products/whitepapers/101516.jsp)

2.8. Some References on E.-R. Modelling 39

40

CHAPTER

THREE

Functionalities for Object Management

All python objects must inherit from the framework classCustomObject , to be thus connected to the framework’s
core. TheCustomObject class defines all the necessary logic to make it possible to ensure the objects’ persistency
within the RDBMS, as well as numerous functionalities to help you with your own business logic. For those purposes,
it works with a model, from which the classes are generally generated.

This chapter presents some important issues that you should not forget when coding and customizing your classes and
logic–particularly important are the methodswillRead andwillChange . We will also look at other functionalities
you can take advantage of, among which: validation of the referential constraints and custom validation logic.

Note that, you may start working directly with the generated classes for your model–adding, modifying, and getting
data (as explained in chapter 4)–and letting the framework do the above-mentioned tasks transparently. The informa-
tion here is provided to allow you to better understand how the framework performs these tasks, and to thus make it
easier to add to, or modify, the framework’s default behaviour to better suit your application needs, e.g. to add custom
validation logic.

Note: Only a small sampling of the methods and functionalities of theCustomObject class, and other
supporting classes, are mentioned here. For a complete picture you will need to look at the source doc
strings, for CustomObject itself, as well as the doc strings for the interfaces it implements, namely
RelationshipManipulation , KeyValueCoding (these two interfaces are exposed in details in chapter 8)
andDatabaseObject .

3.1 From model to python code

A (valid!) model contains all the necessary informations to generate a usable python package that can be used imme-
diately to store and retrieve informations in a database.

In this section, we examine the different ways offered in the framework to derive usable python code from a model;
the model we’ll use isAuthorBooks , that you’ll find it in:
‘Modeling/tests/testPackages/AuthorBooks’ (either the pymodel inpymodel AuthorBooks.py , or the xml-
model inmodel AuthorBooks.xml), and which is described in section 2.1.1.

Note: Even if the framework offers different ways of deriving python code from models, you do nothave touse these
tools: they are provided for convenience but you can choose to write your package and code by other means of your
own. If you choose to do so, you’ll find below in the section?? the few requirements needed to bind your classes to a
model and to the framework.

Quick reminder: in this model, we have two entities,Writer andBook :

41

+--------+ +------+
Writer	<-author----------books->	Book
--------		------
	<-pygmalion--+	
+--------+ | +------+

| |
+-----------------+

3.1.1 Generating the python code

The minimum

The first option you have is to generate the whole python packageAuthorBooks and its modulesWriter.py and
Book.py .

For that purpose, you’ll use the scriptmdl generate python code.py(note that the same functionalities are also
offered in the ZModeler).

On the command-line, type:

mdl_generate_python_code.py model_AuthorBooks.xml

We’ll see in the next paragraph that there exists two different way of generating the code. That one is the simplest and
uses the default option of the scriptmdl generate python code.py: -C or --compact-generation-scheme1.

The script creates the python packageAuthorBooks in the current directory, in which you’ll find the following files:

AuthorBooks/
|-- Book.py
|-- Writer.py
|-- __init__.py
|-- * model_AuthorBooks.py
|-- * model_AuthorBooks.xml
‘-- setup.py

Note: the files marked with a star (*) are the only one that are overwritten by the script, if they already exist.

• init .py , which takes care to load the model within the defaultModelSet ,

• a copy of the model in the corresponding xml file which is used, and a python file containing a copy of the xml
model as well; the reason for which the model is copied into a python file is that it makes it easy to distribute
and install it along w/ the other modules using the standard distutils.

Also note: even if you generate the python module from a pymodel, you’ll only get those two xml-
models in the generated package. This might change in the future, in the meantime, feel free to replace
them with your pymodel, the code generated in ‘init .py’ loading the model is capable of finding ei-
ther a pymodel or an xml-model (see Model.searchModel() (at http://modeling.sourceforge.net/API/Modeling-
API/public/Modeling.Model-module.html#searchModel)

1Please refer tomdl generate python code.py --helpfor a comprehensive view on the script’s usage and options

42 Chapter 3. Functionalities for Object Management

• Writer andBook : they contain the classesBook andWriter , ready to be used

• setup.py : a distutils script that you can use to install the package, to distribute it, etc. (see Distribut-
ing Python Modules (at http://www.python.org/doc/current/dist/dist.html) and Installing Python Modules (at
http://www.python.org/doc/current/inst/inst.html) for details about the Python Distribution Utilities).

This bunch of files gives a minimalist view of what is needed to bind python code to a model and to the framework
–this subject is fully discussed in the dedicated section 3.2. You can use it:

• to quickly test a model, but in this case, you’ll probably prefer to dynamically build the package and modules
(see section 3.1.2, below),

• or to start coding your classes from that point. Now if you want to use the generated code as a basis for your
own development, we strongly advise you to consider using the other generation scheme exposed in the next
paragraph.

Separating the generated code from your own work

During development, especially at early stages, the model is likely to change at a high rate, and so does the code which
is automatically derived from the model. In such situations (and, in fact, each time the model change), it is quite easy
to see that the so-called “compact scheme” used in the paragraph above is not very convenient: the script does not
overwrite any existing file, so integrating the new changes consists in, for example, moving the python file elsewhere,
regenrate the code, then integrate any code you may have written by hand from the previsouly moved python file to
the new one...

That’s why the scriptmdl generate python code.pyhas an other option:-B or --base-generation-scheme, which
is specially designed to keep the generated code separated from the business logic you add, so that you’ll never have
to worry mixing your own logic with automatically derived portions of code.

As an example, let’s see the generated files by this scheme:

AuthorBooks/
|-- Book.py
|-- MDL
| |-- * Book.py
| |-- * Writer.py
| |-- * __init__.py
| |-- * model_AuthorBooks.py
| ‘-- * model_AuthorBooks.xml
|-- Writer.py
|-- __init__.py
‘-- setup.py

As you can see, a new subpackageMDLis created, where the files are always overwritten when regenerating the code
–and more: the files within that directory are the only ones that can be overwritten by the script.

The modulesBook andWriter in the top-level directory are the place where you’ll put your own code; the classes
within directly inherit from the ones in theMDLsubpackage, keeping the automatically generated portion of codes
completely separated from your own code.

3.1.2 Building the python package dynamically, at run-time

You also have the option to derive all necessary modules and classes directly from a model, at runtime. The module
Modeling.dynamic has been added for that purpose, and offers two different options.

3.1. From model to python code 43

Dynamic generating of “standard” python code

The first method simply consists in building the exact same code as the one generated by
mdl generate python code.py :

Load the model
def load_model():

from Modeling import ModelSet, Model
model=Model.searchModel(’AuthorBooks’, ’.’, verbose=1)
ModelSet.defaultModelSet().addModel(model)

build and use it!
from Modeling import dynamic
dynamic.build(model, define_properties=0)
from AuthorBooks.Book import Book

As expected, if you callbuild with define properties=1 , the method adds python properties (see
property’) in built-in functions (at http://docs.python.org/lib/built-in-funcs.html) for each attribute or relation-
ship in the entity, so that you do not need anymore to use e.g.book.getTitle() or book.setTitle , but
simply print book.title or book.title="my title" .

Dynamic generation using metaclass

The second method makes use of the metaclassdynamic.CustomObjectMeta :

file: Book.py
We assume that the model is already loaded
from Modeling import dynamic

class Book:
__metaclass__=dynamic.CustomObjectMeta
entityName=’Book’
mdl_define_properties=1

your own code here

The metaclassCustomObjectMeta automatically adds all the necessary methods to a class for integration with the
modeling framework. It looks for the following attributes in the class:

• entityNamed ‘: mandatory, this is the name of the class’ entity. The corresponding model should have been
loaded prior to the class declaration, or you’ll get adynamic.EntityNotFound exception.

• verbose metaclass : if set, the metaclass prints onsys.stderr some info while building the class.

• mdl define properties : if set, the metaclass will also add properties for each attribute on relationship
in the entity.

Last, then dynamic module also offers a method build with metaclass(model,
define properties=0, verbose=0) which you can use to derive the necessary package and modules
from a model just likedynamic.build() we saw above, the ony difference being that the classes created at
runtime use the metaclass approach.

44 Chapter 3. Functionalities for Object Management

3.1.3 Static vs. dynamic: what’s best?

The question of which option one should use is an opened question! In fact, it highly depends on your own preferences:
some people do not want to hear of code generators, others keep metaclasses away from their code. Some argue that it
is best to maintain the model only, deriving the necessary modules at runtime, while others prefer to statically generate
the code so that it can be put under version control, for example, or because they want to keep an eye on the generated
parts.

This being said, here are a few comments:

• if you go for the static generation of python code, better choose the “base” scheme if you use the script
mdl generate python code.py (or a similar approach if you build the code by your own means).

• whichever method you choose, static generation, dynamic build with or without metaclasses, it is “officially”
supported. Some people have argued that having all these possible ways available makes it difficult to make a
choice; our position is that since we are here speaking about the code people write, we shouldn’t force anyone
to follow a given path if they prefer the other one. We think (and hope!) that the offered possibilities cover most
code pratices –if you think we forgot something, we’ll be happy to hear from you.

Now if you’re really looking for an advice, let’s say that our personal preference consists in dynamically building
the modules, using metaclass and properties.

3.2 The framework’s requirements on python code

3.2.1 Package’s, modules’ and classes’ names

When it fetches objects from the database, the framework needs to be able to instantiate every classes referenced in a
model, so it also needs to find them! It does so by simply importing the class with a statement equivalent to:

>>> from package_name.module_name import class_name

where the package’s name, the module’s name and the class’ name are the one provided in the model (the package’s
name is in the model’s properties while the two others are in the crresponding entity’s properties, see sections 2.3.1
and 2.3.2).

Thus, these three properties should always be kept in sync with the corresponding code.

3.2.2 Within classes

A class corresponding to an entity must meet the following requirements:

Inheritance: the class must includeCustomObject in its inheritance list

Initializer: the method init () should be designed so that it is possible to call it with no arguments at all: for
example, if the method accepts arguments, each one should have default values. The reason for this is that the
framework relies on a call to init () without any arguments, when it needs to create an instance before
populating it with data fetched from the database.

Entity’s name: the class must define a methodentityName() taking no argument: this is the way the framework
currently binds an object to its entity. This should be changed (see TODO)

willRead() : this method defined inCustomObject must be called prior to accessing an object’s property2. It
informs the object that it is time to fetch the values stored in the database if it’s not done yet. This is because

2i.e. either an attribute or a relationship defined in the entity

3.2. The framework’s requirements on python code 45

objects can be “faults” (ZODB speaking, they are ghosts), i.e. they have been instantiated but not fully initialized
yet (lazily initialization)

willChange() : defined inCustomObject as well, this method should be called prior to modifying an object’s
property. This is part of theObserving interface, and its purpose is to notify theEditingContext that the
object is about to change: theEditingContext needs to keep track of changes in its graph of objects in order
to be able to save the changes (ZODB speaking, this is what the mix-in classPersistent does transparently
for immutable attributes (see also: TODO)).

Of course,willChange automatically invokeswillRead .

Getters, setters: although the python code derived from a model stores its properties in attributes beginning with an
underscore (for example,lastName for attributelastName), the framework itself does not require this.
Instead, it accesses and sets the values using the so-called private API of KeyValueCoding; shortly said, this
means that in order to read a property ’name’ for example, it tries to find either an attribute or a method called
’ name’, ’ name()’, ’ getName()’, ’name’, ’getName()’. Refer to 8.2 for a complete overview.

Warning: It is your responsability to callwillRead and willChange when you are about to, respectively,
access or change an object’s property corresponding to a Model’s Attribute or Relationship; if you do not, the
EditingContext , which is responsible for examining the changes and making them persistent, is likely to do
only part of its job, possibly resulting in objects being partially saved, or not at all.

3.3 Automatic validation of referential and business-logic constraints

A major part of the checks made at runtime are validation operations –for example, you want to verify that a zipCode
has a valid format, that the age of a person is a positive integer, etc.

The framework defines an interface,Validation , which allows you and the framework as well to trigger these
validations when needed, in a defined scheme. You automatically get these functionalities when your class inherits
from Modeling.CustomObject and corresponds to an entity defined in a model.

There is, roughly, two kinds of validation checks. The first one consists in checking individual properties of an object
(such as: check that a value for a given key is of the proper type, that its width is ok if it is a ’string’, etc.); the second
one considers objects as a whole: its checks are like post-conditions, or consistency checking. We will see in the
following how both can be adjusted and triggered.

3.3.1 Integrity constraints derived from the underlying model

When you define a model, you also define a number of constraints that has to be checked. For example, lower- and
upper- bounds of a relationship’s multiplicity, say (min=1, max=3), specify that an object cannot have less than one
object (of a certain type!) in relation with itself, and no more than three as well. You can also mark an attribute as
’required’ to avoid it beingNone.

The framework naturally verifies these constraints: the checking occurs automatically when an EditingContext is about
to save changes (we will see hereafter how this can be manually triggered).

The constraints that are enforced are the following:

• Attributes:

– type of the stored value,

– if it is marked as ’required’, it shouldn’t beNone

• Relationships:

– the type of the objects in relation with oneself,

– the number of objects in relationvs. the relationship’s multiplicity.

46 Chapter 3. Functionalities for Object Management

3.3.2 Checking constraints: key by key

To verify a given value for a specific attribute, say onlastNamefor a Writer object, you use the method
validateValueForKey :

aWriter.validateValueForKey(’Cleese’, ’lastName’)

This check that the value’Cleese’ is a valid value forWriter.lastName. Note that this value is directly given as a
parameter and is not stored, nor searched, within the object: the validation can thus be done without actually assigning
the value to an attribute (but the “global” checks we’ll see hereafter do not work that way).

Return code

When the value is valid,validateValueForKey simply returns. But if it encounters an error, it raises the excep-
tion Validation.ValidationException . This exception holds a dictionary gathering the reasons of failure;
this dictionary has the following characteristics:

• its keys are names of attributes for which the validation failed,

• the corresponding values indicates the reason(s) for the failure.

For example, suppose we calledaWriter.validateValueForKey(’’, ’lastName’) and that attribute
lastNameis marked as ’required’, the raised exception’s dictionary is then::

{’lastName’: [’Key is required but value is void’,],
}

If validateValueForKey raises an exception, the dictionary will only contain one key: the one that was supplied
as the parameter ’key’. Its corresponding value is a list of all observed errors; here, it corresponds to the constant
Validation.REQUIRED defined in the Validation interface. You will find there the complete list of possible error
codes.

How to define your own validation logic

Now suppose that you want to enforce that the value stored in thelastNameattribute does not begin with a’J’ . This
sort of constraint is not expressed within the model, so you have to write some code for that, and you want that to be
checked transparently, along with other constraints.

The validateValueForKey is ready for such a situation: it expects you to write a method named
validateLastName (note the capitalized letter invalidate LastName). If it exists, then it gets automatically
called. This is how you would write it:

from Modeling import Validation

def validateLastName(self, aValue):
"Checks that the provided value does not begin with a ’J’"
if aValue.find(’J’)==0:

raise Validation.ValidationException
return

3.3. Automatic validation of referential and business-logic constraints 47

Let’s call aWriter.validateValueForKey("Jleese", "lastName") one more time, catch the excep-
tion, and checks its error dictionary:

{ ’lastName’: [’Custom validation of key failed’],
}

Our own validation method has been taken into account, as expected, and the value
Validation.CUSTOM KEY VALIDATION, part of the errors for keylastName, signals it.

3.3.3 Validation.ValidationException : the list of error-codes

The values that can be found in the list of reasons of failures for a given key are the following (extracted from the
Validation interface):

REQUIRED="Key is required but value is void"
TYPE_MISMATCH="Wrong type"
CUSTOM_KEY_VALIDATION="Custom validation of key failed"
LOWER_BOUND="Lower bound of key’s multiplicity constraint not fulfilled"
UPPER_BOUND="Upper bound of key’s multiplicity constraint not fulfilled"
DELETE_DENY_KEY="Key has rule ’DELETE_DENY’ but object still holds object(s)"
CUSTOM_OBJECT_VALIDATION="Custom validation of object as a whole failed"
OBJECT_WIDE="Validation of object as a whole failed"
OBJECT_WIDE_KEY=’OBJECT_WIDE_VALIDATION’

The last three items occurs when an object is validated as a whole, not when its individual properties are checked; all
other values can be returned byvalidateValueForKey .

3.3.4 Validating an object “as a whole”

We know how specific properties can be checked, but we still need a way to validate the consistence of the whole
object, so that e.g. invariants of an object are ensured before its data is stored in the database. The framework defines
the following methods for that purpose:

• validateForInsert()

• validateForUpdate()

• validateForSave()

• validateForDelete()

The two first methods simply calls the third one. The fourth one verifies a particular set of constraints we’ll see in a
moment.

validateForSave()

This method iterates on every key (attributeand relation) and callsvalidateValueForKey for each of them,
using the stored value as the parameter ’value’.

Note: if you defined your own validation logic for some keys, they are called as well, as expected and seen above.

48 Chapter 3. Functionalities for Object Management

You can also define your own global validation method, like:

from Modeling import Validation
def validateForSave(self):

"Validate "
error=Validation.ValidationException()
try:

CustomObject.validateForSave(self)
except Validation.ValidationException, exc:

error.aggregateException(exc)
Your custom bizness logic goes here
if self.getFirstName()==’John’: # No John, except the One

if self.getLastName()!=’Cleese’:
error.aggregateError(Validation.CUSTOM_OBJECT_VALIDATION,

Validation.OBJECT_WIDE_KEY)
error.finalize() # raises, if appropriate

Now suppose that our objectaWriter storesJleese for lastNameandJohn for firstName. The dictionary of
errors stored in the raised exception, aftervalidateForSave is called, will be:

{ ’OBJECT_WIDE_VALIDATION’:
[’Validation of object as a whole failed’,

’Custom validation of object as a whole failed’],
’lastName’:

[’Custom validation of key failed’],
}

The value Validation.OBJECT WIDE KEY is used to report global validation errors. You will find it
as soon as an error has been detected while validating. Here you find an other value for that key,
Validation.CUSTOM OBJECT VALIDATION, indicating that our own code did not validate the values as well.
Note that the validation for keylastNamehas failed as well and is also reported.

Warning: IMPORTANT NOTE – contrary to what happens with methodsvalidate<AttributeName> , the
methodvalidateForSave() we defined here overrides the definition inherited fromCustomObject . Hence, it
is very important not to forget calling the superclass’ implementation, as described in the code above.

validateForDelete()

TBD.

3.3.5 Misc.

A Validation.ValidationException object defines str , so for the previous example,str(error)
says::

3.3. Automatic validation of referential and business-logic constraints 49

Validation for key OBJECT_WIDE_VALIDATION failed:
- Validation of object as a whole failed
- Custom validation of object as a whole failed
Validation for key name failed:
- Custom validation of key failed

50 Chapter 3. Functionalities for Object Management

CHAPTER

FOUR

Working with your objects: insert,
changes, deletion

Now that we have seen how an object interacts with the core, we still have to learn about how they can be inserted,
updated or deleted and how these changes can be made persistent into aRDBMS.

There is one component which fulfills these goals: theEditingContext . EditingContext can be thought as
a graph of objects. Its major feature is to hold objects at runtime for which it is its responsability to track changes,
either in the object (changes for some of an object’s attributes) or between objects (when the objects in relationships
change).

Everything you do within anEditingContext is likely to be made persistent (given that the objects derive from
CustomObject and that they have a corresponding entity defined in some model).

4.1 Ensuring unicity of an object

An other feature assumed byEditingContext s is that they make sure that a given object has a single instance
within them. So, if you fetch a particular object, then later access the same object e.g. by traversing some relationships,
you are sure that the two are the same object (exactly the same, not only the same values). Put differently, say you
haveB in relation toA andC in relation toA, (and given thatA, B andC are in the sameEditingContext as they
should be), you will always have this situation:

B C
\ /

\ /
\ /

A

and you willNEVER get such a graph:

B C
\ \

\ \
A A’

with objectsA andA’ ultimately referring to the very same row in the database.

To create anEditingContext , simply use the statements:

51

>>> from Modeling.EditingContext import EditingContext
>>> ec=EditingContext()

Note: You can refer to ‘modeling/tests/test EditingContext Global.py’ for examples of use – it covers all topics de-
scribed here.

4.2 Inserting an object

As soon as an object is created, you should inform theEditingContext of its existence, so that, when instructed, it
will be able to save it into the correct database. In fact, a brand new object should be inserted in anEditingContext
as soon as you wish to establish some relationships with other objects.

To insert an object in anEditingContext , simply call ’insertObject()’:

>>> newBook=Book()
>>> ec.insertObject(newBook)

Alternatively, you can use the methodinsert ; both insert andinsertObject are completely equivalent, and
depending on your own feeling you may prefer one or the other.

>>> newBook=Book()
>>> ec.insert(newBook)

4.3 Updating objects

As explained in section??, the getters and setters take care of informing theEditingContext of any changes made
to an object. Thus, except for thewillRead andwillChange methods in the getters and setters, you do not need
to take any particular other action.

We will see in section 4.5 how to retrieve objects from the database.

4.4 Deleting an object

(We suppose here we already know how to get objects –this is covered by the next section)

When you want an object to be deleted, you inform it with thedeleteObject message:

>>> ec.deleteObject(aBook)

Alternatively, you can use the methoddelete ; bothdelete anddeleteObject are completely equivalent, and
depending on your own feeling you may prefer one or the other.

You can also discard the insertion of an object you’ve just added:

52 Chapter 4. Working with your objects: insert, changes, deletion

>>> newBook = Book()
>>> ec.insert(newBook)
[... then at some point you can change your mind]
>>> ec.delete(newBook)

Note that, before a deleted object is about to be made persistent (i.e. when its corresponding row in the database
is about to be deleted), some logic is triggered. For example, if this object still has some relationships but these
relationships are marked asCASCADEDELETE, the objects in relations will be deleted as well (given that their own
validation logic allows them to be deleted, of course). Or, if it is marked asDELETE DENY, the deletion will be
denied and for that object to be deleted, you will need to remove any object in relation with it.

You can refer to the next section, 4.6, and to relationships’ properties described in section 2.6.2 for further details.

4.5 Fetching objects

We will now see how you can fetch specific objects from the database. Note that once you fetched one or more objects,
you do not need to explicitly fetch the objects in relations, this is done automatically. For example, once you have
fetched aWriter object (see??), itspygmalionor itsbookswill be transparently and automatically fetched when you
ask for them (aWriter.getBooks() , so you do not have to worry about this. Moreover, these objects in relation
to ’aWriter’ are only fetched against the database where they are needed, so the memory footprint of your application
remains reasonable (and the whole database is not fetched into memory when you access a single object!).

Naturally, before traversing relationships just like you normally do in python code, you need to fetch at least one
object. We will see now how this is done.

In this section, we use the model described here:??, which is one of the model used in the unittests of the framework.

4.5.1 Principles

To fetch an object, you need:

1. to know the entity (or the root-entity of an inheritance hierarchy) corresponding to the object(s) you want to
fetch

2. to qualify the object(s) you need to fetch, i.e. to provide some informations about the properties it/they have;
this is optional: you may want to fetch all objects of a certain type.

As expected, theEditingContext is again the object to which we will ask for the service. The corresponding
method isfetch() .

4.5.2 Simple fetch

To fetch all theWriter objects, you simply write:

objects=ec.fetch(’Writer’)

That’s it.

Now what if you want theWriter objects whose last name is’Hugo’ ? That’s not really more complicated:

4.5. Fetching objects 53

objects=ec.fetch(’Writer’, qualifier=’lastName=="Hugo"’)

This is almost all you need to fetch any object from the database: just identify the type of the objects you’re fetching,
and the qualifier describing them. Everything is then done automatically, i.e. the correct SQL statement(s) are built
and executed and the objects are then built from the retrieved rows and given back to you in a sequence.

In the next sections, we will see more complete examples, but it basically always this line that you’ll use for fetching
objects.

4.5.3 Pattern matching

Suppose you want to get all the writers whose names begins with ’Hu’, you’ll write:

objects=ec.fetch(’Writer’, qualifier=’lastName like "Hu*"’)

Available wildcards are’*’ and’?’ . The former matches any number of characters (including 0 –zero– character),
the latter exactly one occurrence of a character.

You can also use the operator’caseInsensitiveLike’ :

objects=ec.fetch(’Writer’, qualifier=’lastName caseInsensitiveLike "hu?o"’)

will match: ’Hugo’ , ’Hulo’ , ’HUGO’ , ’hUXO’ , ...

Alternatively, you’d probably prefer to use a shorted alias forcaseInsensitiveLike : ilike

objects=ec.fetch(’Writer’, qualifier=’lastName ilike "hu?o"’)

Last, if you want to add raw’*’ and’?’ characters in a like pattern, escape them. For example, this fetchs all books
whose title ends with’here?’ :

objects=ec.fetch(’Book’, qualifier=’title like "*here\?"’)

4.5.4 Equality, comparisons, in and not in

When building your qualifiers, you can use the following operators:

• ’==’ : equality

• ’<’ : less than

• ’<=’ : less than, or equal

• ’>’ : greater than

• ’>=’ : greater than, or equal

• ’!=’ : different than

54 Chapter 4. Working with your objects: insert, changes, deletion

• ’in’ : check that the value is in a list (rvalue is a list, not a tuple)

• ’not in’ : check that the value is in a list (rvalue is a list, not a tuple)

So, with this qualifier used to fetchWriter objects,

objects=ec.fetch(’Writer’, qualifier=’age >= 80’)

you’ll get all the authors who are 80 years old or more.

Note: in andnot in operators require that the right value is expressed as a list, and not as a tuple (i.e. surrounded
square brackets ’[’ and ’] ’). For example:

objects=ec.fetch(’Writer’, qualifier=’age in [82, 24]’)

4.5.5 Negating, Con- or disjoining qualifiers

Now that we’ve seen all possible operators, we’ll see that it is possible to conjoin, disjoin, or negate them. For example:

objects=ec.fetch(’Writer’, qualifier=’lastName like "H*" AND age >= 80’)

will give you the author whose lastName begins with the capitalized letter’H’ and who are older than 80.

Likewise,

objects=ec.fetch(’Writer’, qualifier=’age<50 OR lastName like "????"’)

will give you theWriter objects who are less than 50 years old, or whose last name has exactly 4 letters.

Last, operator’NOT’ negates the expression, so

objects=ec.fetch(’Writer’, qualifier=’NOT(age<50 OR lastName like "????")’)

will fetch theWriter objects who are older than 50andwhose lase name is not exactly 4 letter long.

Note: Operators’AND’ , ’OR’ , ’NOT’ , ’IN’ and ’NOT IN’ can be written upper-case or lower-case, while
operators’like’ , ilike and’caseInsensitiveLike’ should be written as-is (exact typo.)

Warning: The precedence of the operators is not very clear –it depends on a parser (spark: cf. spark
home page (at http://pages.cpsc.ucalgary.ca/%7Eaycock/spark/)) which I do not fully understand, I must
admit. Moreover, it might be subject to changes.

For example:NOT age<50 OR age>200 is in fact equivalent toNOT(age<50 OR age>200) .

Hence, in general, you are strongly encouraged to enclose the expressions in brackets so that the prece-
dence of operators does not intervene at all.

4.5. Fetching objects 55

4.5.6 Dotted notation

Last, it is possible to qualify the fetched objects, not only on their own attributes, but also on their related objects’
properties as well. The notation is the classical dotted notation, so, in order to fetch theBook objects written by
authors having a pygmalion whose last name begins with the letter’R’ (whew!), you simply write:

objects=ec.fetch(’Book’, qualifier=’author.pygmalion.lastName ilike "r*"’)

which is really much simpler to write python than to explain in english!

For the curious, this will trigger a SQL method like:

SELECT t0.id, t0.title, t0.FK_WRITER_ID, t0.PRICE
FROM BOOK t0

INNER JOIN (WRITER t1
INNER JOIN WRITER t2
ON t1.FK_WRITER_ID=t2.ID)

ON t0.FK_WRITER_ID=t1.ID
WHERE UPPER(t2.LAST_NAME) LIKE UPPER(’r%’)

4.5.7 How much objects will a query fetch?

If you manipulate a big database and wants to bind the result of a query which is built e.g. using your application GUI,
you certainly do not want to allow the users to fetch a whole table into memory just because they type’*’ instead of
’B*’ in the query string.

In that case, you want to have the number of objects that would be retrieved using a givenFetchSpecification ,
while not actually fetchingthe objects.

TheEditingContext provides a dedicated method for that purpose:

nb_of_objects=ec.fetchCount(’Book’, qualifier=’...’)

returns the number of objects that would be returned if the methodfetch() is triggered with the very same argument.

4.5.8 Fetching and inheritance

(TBD: This section has to be rewritten – for the moment being it consists mostly of a copy-paste of messages exchanged
on the mailing-list)

Suppose you have the following model:

56 Chapter 4. Working with your objects: insert, changes, deletion

Address <<-toAddresses---toEmployee-> Employee
ˆ

/ \
T
|

+--------------+
| |

Executive SalesClerk

(See the full model description in section 2.1.2)

• An address object can be transparently linked to either an Employee, an Executive or a SalesClerk instance.
There is nothing particular to do, this is automatically handled.

• address.toEmployee() will automatically retrieve the right object (being an instance of one of those three
classes). Here again, no particular action is needed, the framework handles it for you.

• Now, when fetching, you can specify whether you want to fetch a single class or its inheritance tree as well.
Compare this, based on the test database and modelStoreEmployees :

>>> from StoreEmployees import Address
>>> from Modeling.EditingContext import EditingContext as EC
>>> ec = EC()
>>> qualifier=’toAddresses.zipCode like "4*"’
>>> ec.fetch(’Employee’, qualifier)
[]
>>> # Now fetch against the inheritance tree below ’Employee’
... all_objects=ec.fetch(’Employee’, qualifier, isDeep=1)
>>> [(o.entityName(), o.getFirstName(),o.getLastName())
... for o in all_objects]
[(’SalesClerk’, ’John Jr.’, ’Cleese’),

(’SalesClerk’, ’Jeanne’, ’Cleese’),
(’Executive’, ’John’, ’Cleese’)]

As you can see, specifyingisDeep=1 when fetching allows you to fetch against the whole inheritance tree for
a given entity (here,Employee).

4.5.9 The influence of an EditingContext on fetchs

EachEditingContext holds a different graph of objects, isolated from the other, where modifications, insertions
and deletions can be made independently until they are saved in the database.

The state of a givenEditingContext naturally have an impact on the objects you fetched. When nothing has been
changed, you obviously get the objects as they are stored in the database. However, whenever you insert, modify or
delete object, the result set of a fetch changes:

4.5. Fetching objects 57

>>> from AuthorBooks.Book import Book
>>> ec=EditingContext()
>>> books=ec.fetch(’Book’)
>>> pprint.pprint([b.getTitle() for b in books])
[’Gargantua’,

’Bouge ton pied que je voie la mer’,
’Le coup du pere Francois’,
"T’assieds pas sur le compte-gouttes"]

>>> new_book=Book()
>>> new_book.setTitle(’The Great Book’)
>>> ec.insert(new_book)
>>> books=ec.fetch(’Book’)
>>> pprint.pprint([b.getTitle() for b in books])
[’Gargantua’,

’Bouge ton pied que je voie la mer’,
’Le coup du pere Francois’,
"T’assieds pas sur le compte-gouttes",
’The Great Book’]

As exposed above, newly inserted objects automatically appear in the result set when applicable. Of course, you can
still benefit from standard fetch techniques, such as qualifiers:

>>> books=ec.fetch(’Book’, ’title like "*G*"’)
>>> [b.getTitle() for b in books]
[’Gargantua’, ’The Great Book’]

You get the expected result, even if the inserted book isnotsaved in the database yet.

If you modify your objects, these modifications will always be visible in your result set; continuing on the same
example:

>>> gargantua=ec.fetch(’Book’, ’title == "Gargantua"’)[0]
>>> gargantua.setTitle(’Gargantua et Pantagruel’)
>>> books=ec.fetch(’Book’, ’title like "*G*"’)
>>> [b.getTitle() for b in books]
[’Gargantua et Pantagruel’, ’The Great Book’]

Your changes to objects are not persistent yet in the database, still, they appear as expected in the result set.

Last, the same principles apply to deleted object:

58 Chapter 4. Working with your objects: insert, changes, deletion

>>> ec.delete(gargantua)
>>> pprint.pprint([b.getTitle() for b in ec.fetch(’Book’)])
[’Bouge ton pied que je voie la mer’,

’Le coup du pere Francois’,
"T’assieds pas sur le compte-gouttes",
’The Great Book’]

>>> [b.getTitle() for b in ec.fetch(’Book’, ’title like "*G*"’)]
[’The Great Book’]

Objects marked as deleted do not appear in the result set, even if the object still exists in the database (it will only be
deleted when theEditingContext receives thesaveChanges() message, see 4.6).

4.5.10 Fetching raw rows

Sometimes and for some reasons, you do not want to get a whole set of fully initialized objects.

For example, you need to get the data for a lot of objects to do some processing on some of its attributes, but you don’t
need the objectsper se.

Or, building a GUI, you want to present a large list of items from which the user can e.g. choose one for, say, inspection
or modification; here again, you do not need all theobjectsto build the list, and most of times you do not want it either
since this would imply a too large memory footprint (along with a fetch taking too much time): all what you want is
the raw data themselves, and the ability to turn them into real objects just when you need it (e.g. for modification).

Note: Of course, when fetching raw rows, you cannot benefit from most of the framework’s capabilities since it
manipulates objects, not dictionaries; you shoudl also note that the fetched data are not cached by the framework.
However, in some situations like the ones we saw above, it’s just what you want; moreover, it speeds up the fetch
process, and reduces the memory footprint to just what is needed.

In this section we’ll see how to do these both things: fetching raw rows and turning a raw into a real object.

Getting raw data

The framework offers a specific API for this:

4.5. Fetching objects 59

>>> from Modeling.EditingContext import EditingContext
>>> import pprint, StoreEmployees
>>> ec = EditingContext()
>>> raw_employees = ec.fetch(’Employee’, isDeep=1, rawRows=1)
>>> pprint.pprint(raw_employees)
[{’firstName’: ’Jeanne’,

’fkStoreId’: 1,
’id’: 2,
’lastName’: ’Cleese’,
’storeArea’: ’DE’},

{’firstName’: ’John Jr.’,
’fkStoreId’: 1,
’id’: 1,
’lastName’: ’Cleese’,
’storeArea’: ’AB’},

{’firstName’: ’John’,
’fkStoreId’: 1,
’id’: 3,
’lastName’: ’Cleese’,
’officeLocation’: ’4XD7’}]

As you can see, with parameterrawRows you get the raw dictionary directly from the database. No object is initialized
by such a fetch. However, you can use every functionality we already saw for fetching (inheritance with parameter
isDeep , qualifiers), as is.

The very same rule applies to raw fetch as to “normal” fetch, in particular, everything we saw in the section 4.5.9 is
still valid. If your EditingContext contains some newly inserted objects, you’ll them appear; and deleted objects
won’t appear. For example:

60 Chapter 4. Working with your objects: insert, changes, deletion

>>> from StoreEmployees.SalesClerk import SalesClerk
>>> terry=SalesClerk()
>>> terry.setFirstName(’Terry’); terry.setLastName(’Gilliam’)
>>> ec.insert(terry)
>>> salesClerks=ec.fetch(’SalesClerk’, rawRows=1)
>>> pprint.pprint(salesClerks)
[{’firstName’: ’Jeanne’,

’fkStoreId’: 1,
’id’: 2,
’lastName’: ’Cleese’,
’storeArea’: ’DE’},

{’firstName’: ’John Jr.’,
’fkStoreId’: 1,
’id’: 1,
’lastName’: ’Cleese’,
’storeArea’: ’AB’},

{’firstName’: ’Terry’,
’fkStoreId’: None,
’id’: <Modeling.GlobalID.TemporaryGlobalID instance at 0x84fcc64>,
’lastName’: ’Gilliam’,
’storeArea’: None}]

>>> salesClerk.globalID()
<Modeling.GlobalID.TemporaryGlobalID instance at 0x84fcc64>

You probably already noticed the particular value associated to Terry’s ’id ’ field. Since this object is not saved in
the database yet, its currentid (the primary key forSalesClerk objects) is not determined yet either. Instead, the
framework returns its identifier, which is aTemporaryGlobalID .

The same phenomenon appear on foreign keys when an object is related to a newly inserted object; continuing the
previous example:

>>> pprint.pprint(ec.fetch(’Executive’, rawRows=1)) # No modifications yet
[{’firstName’: ’John’,

’fkStoreId’: 1,
’id’: 3,
’lastName’: ’Cleese’,
’officeLocation’: ’4XD7’}]

>>> from StoreEmployees.Store import Store
>>> parrot_store=Store()
>>> parrot_store.setCorporateName(’We sell parrots’)
>>> ec.insert(parrot_store)
>>> john=ec.fetch(’Executive’, ’firstName=="John"’)[0]
>>> john.getToStore().removeFromEmployees(john)
>>> john.setToStore(parrot_store) ; parrot_store.addToEmployees(john)
>>> pprint.pprint(ec.fetch(’Executive’, rawRows=1))
[{’firstName’: ’John’,

’fkStoreId’: <Modeling.GlobalID.TemporaryGlobalID instance at 0x8364a0c>,
’id’: 3,
’lastName’: ’Cleese’,
’officeLocation’: ’4XD7’}]

>>> parrot_store.globalID()
<Modeling.GlobalID.TemporaryGlobalID instance at 0x8364a0c>

4.5. Fetching objects 61

We see clearly here that this time,fkStoreId gets aTemporaryGlobalID corresponding toparrot store ’s
global id. Moreover, we also remark that even if the modifications are not saved into the database yet, raw fetching
returns the objects as they currently are in theEditingContext , just as with normal fetching.

Turning rows into real objects

Say you’ve presented to your user a large list of objects to choose from. Now the user selects one for modification or
detailed inspection, probably including the objects in relations. There you need to get the magic on real objects back.

This is easily done withEditingContext ’s faultForRawRow ; continuing the previous example:

>>> raw_john=ec.fetch(’Executive’, ’firstName=="John"’, rawRows=1)[0]
>>> pprint.pprint(raw_john)
{’firstName’: ’John’,

’fkStoreId’: <Modeling.GlobalID.TemporaryGlobalID instance at 0x8364a0c>,
’id’: 3,
’lastName’: ’Cleese’,
’officeLocation’: ’4XD7’}

>>> john=ec.faultForRawRow(raw_john, ’Employee’)
>>> john
<Executive.Executive instance at 0x8531db4>
>>> john.getFirstName(),john.getLastName(),john.getToStore().getCorporateName()
(’John’, ’Cleese’, ’We sell parrots’)

Here we converted a raw dictionary to a real object, which is automatically registered within the framework with all
its normal capabilities, just as if you directly fetch()’ed it from the database.

As you can see,faultForRawRow() takes a dictionary and the name of the entity the object belongs to, and returns
the real object. Note that the entity’s name shouldn’t be exactly the right one: we asked for anEmployee , we got an
object of class/entityExecutive , sub-entity ofEmployee . The only constraint onentityName is that it needs
to belong to the same inheritance tree than the object’s. This makes life easier when turning into objects raw rows
which were fetched against a whole inheritance tree.

For example, you may fetch raw rows for the whole hierarchy beyond entity ’Employee’: the rows you’ll get will
belong to either entities ’Employee’, ’SalesClerk’ or ’Executive’, but this information is not enclosed within the
dictionaries themselves1. When turning the raws back to objects, just specify the root entity, and the object of the right
class will be automatically returned.

4.6 Saving Changes

When you are ready to save changes you made in anEditingContext , you simply send it the message
saveChanges() :

ec.saveChanges()

which then performs all appropriate actions needed to make your changes persistent into the database.

Before it saves changes, theEditingContext checks every object against constraints derived from the underlying
model, as well as your own validation logic if you have defined some; of course, deleted objects are examined as well

1except that, if the sub-entities have more attributes than their parent, you’ll probably be able to guess to which entity a dictionary belongs to:
for instance, only ’Executive ’ objects have an attribute ’officeLocation ’.

62 Chapter 4. Working with your objects: insert, changes, deletion

and checked against possible specific relationships’ constraints (such as: an object, which has a relationship whose
deleteRule isDENY, should have no more objects registered to that relationship) –see 3.3 for details.

Then and again before saving changes, it propagates the deletions, if needed (cf. relationship’s deleteRule():CASCADE
andNULLIFY). For precisions on this, and/or if you want to trigger this propagation at specific moments (e.g., when a
HTTP request/response loop finishes), see documentation forEditingContext.processRecentChanges() .

4.7 Discarding changes: the destruction process of an
EditingContext

Since an undo/redo mechanism is not supported yet, the only way to forget changes is to delete the
EditingContext (at least, never send thesaveChanges message to it).

4.7.1 Finalizing an EditingContext : breaking reference cycles

When anEditingContext is about to be deleted, itsdispose() method gets called. This is followed with a
two-step procedure, acting on each object registered within theEditingContext :

1. Un-registered: Each object held by the EC is unregistered and detached, and, if no other reference to that
object exists, it will thus be ready to be garbage collected – however, other objects in theEditingContext
are likely to hold a reference to it especially if your model defines relationships between objects (see below).
From this point on,obj.editingContext() returnsNone.

2. Invalidated: Then, depending on the value returned byinvalidatesObjectsWhenFinalized() :

• If true, then the object receives the messageclearProperties , defined inDatabaseObject , which
empties its dict – this is calledinvalidating the object.

• otherwise, no further action is taken.

The default behaviour for anEditingContext is to invalidate its objects. The reason for this is that the objects
you fetch or create within anEditingContext are most of the time in relation with each other; these relations
tend to create reference cycles between them, hence making it harder for the garbage collection to notice they are not
referenced anymore. Invalidating each object actually breaks the reference cycles which helps the garbage collecter to
detect that they should be destroyed.

4.7.2 Controlling the finalization stage

There are circumstances where the default behaviour is not what you want. For example:

• if your model does not define any relationships, you know you can safely skip invalidating your objects.

• If you are using anEditingContext in a batch that loads and processes lots and lots of objects, say 10,000
objects, after which the process simply dies, you really don’t want to wait for python to invalidate every single
objects, simply because this can take hours (I saw a python process stuck on this for an hour before I lost
patience and killed it). You’d probably prefer to let the operating system release the memory allocated to the
dying process.

Here is how you can control the finalization stage:

4.7. Discarding changes: the destruction process of an EditingContext 63

EditingContext.invalidatesObjectsWhenFinalized default is a class attribute that controls the
global behaviour for allEditingContext instancesexcept those which were specifically configured(see be-
low). If set to true, all existing and future EditingContexts will invalidate their objects when they are destroyed,
otherwise they won’t.

EditingContext.setInvalidatesObjectsWhenFinalized() controls whether a specific
EditingContext instance invalidates its objects when it’s been disposed. Note that this setting su-
persedes the previous one.

64 Chapter 4. Working with your objects: insert, changes, deletion

CHAPTER

FIVE

Nested EditingContext s

Sometimes you need more than a simpleEditingContext . Suppose you have an application where a complex
operation needs several steps to be performed by the user, each of these steps implying the insertion, deletion or
updates of many objects. This complex operation can be a sub-process of an other long-standing process.

Normally you want to give to the user the possibility to cancel the modifications at any point in the sub-process. Most
of the time, you also want all the changes made during these steps to be applied as a whole, or not at all–this is
Atomicity. How can this be done?

One possibility could be to use an otherEditingContext . It might be suitable for very simple cases, however you
probably do not want this, because:

• theEditingContext already holds the objects we wish to work with, making re-fetching them into an other
EditingContext seem unreasonable.

• Worse, if you have already updated, inserted or deleted some objects in yourEditingContext which have
not been saved yet, you will not see these changes in the newEditingContext –and you probably do not
want to save them at this point.

• Plus, irrespective of the above two points, saving the changes in the secondEditingContext would uncon-
ditionally save the changes (thus overwriting any changes in the firstEditingContext) that were made but
not saved before the complex operation began. This, again, is probably not what you would want.

An other solution could be to track all the changes made during the successive steps. However, this is a difficult task.
Each step will probably trigger one or more methods transforming the objects; these methods probably trigger other
methods, etc. It will be difficult to track the changes, and it will be even more difficult to revert them.

In such a situation, you will not be able to separately validate the changes from the complex operation: validation
would have to apply to all changes, those made by the subprocess along with those previously made by the main
process. Hence you have no way of separately checking the Consistency of the changes made in the sub-process itself.

Last, if your application maintains some other view based on the mainEditingContext , you probably also do not
want that the changes made in the sub-process are visible in the other views before the user validates (or discards)
them. But insuring Isolation will be a real pain at best, impossible at worst.

5.1 Bringing transactions to the object world

A nestedEditingContext is the solution for the problem. It provides a clean and convenient way of making
changes on an otherEditingContext , while exposing three of the four ACID properties at the object level:

• Atomicity: Changes made in a nestedEditingContext will be all saved in the parentEditingContext ,
or none will be applied.

65

• Consistency: When saving the changes made in a nestedEditingContext to its parentEditingContext ,
these changes will be checked just as when you save changes on anEditingContext to the database: there
is no way to save an inconsistent state.

• Isolation: All changes made to a nestedEditingContext are kept private within the nested
EditingContext until they are saved to the parentEditingContext . Until this point, even the parent
will not be aware of the changes.

In other words, you can think of a nested EditingContext as a transaction made at the object level.

Moreover, any object you will get in a nestedEditingContext will reflect the changes made on it in its parent,
even the uncommitted/unsaved ones, e.g. inserted objects will show up in the result set of a fetch, but deleted objects
won’t.

5.2 Declaring and using a nested EditingContext

Creating a nestedEditingContext You create a nestedEditingContext by simply supplying the parent
EditingContext to the initializer:

>>> from Modeling.EditingContext import EditingContext
>>> parent_ec=EditingContext()
>>> child_ec=EditingContext(parent_ec)

Fetching objects You fetch objects exactly the same way you do with a standardEditingContext , as described
in section 4.5, ”Fetching objects”.

However, the result set you’ll get will probably be different than the one you would get by asking a standard
EditingContext , because:

• every new object inserted in the parentEditingContext matching the fetch specification will show up
in the result,

• you won’t see any of the objects that are marked as deleted in the parentEditingContext ,

• the states of the objects in the result set will reflect any changes made to them in the parent object store,
even the uncommitted ones.

Current operations All currently supported operations on anEditingContext , such as inserting or deleting an
object, making changes and validating them, are available in a childEditingContext without any modifi-
cations to your code.

Discarding or saving changesYou save the changes made in a childEditingContext to its parent just by calling
saveChanges() on it. Remember: a nestedEditingContext saves its changes to its parent,NOT to the
database. If you want to make them persistent, you will need the two following steps:

>>> child_ec.saveChanges() # save changes to the parent_ec
>>> parent_ec.saveChanges() # save the changes to the database

Note: That’s the reason why the fourth of ACID properties,Durability is not supported: since the changes
are saved in the parentEditingContext and not to the database itself, they will be obviously lost if the
application terminates abruptly.

Discarding the changes made in a childEditingContext is as simple as forgetting the child (e.g. dy delet-
ing it). Remember that a parentEditingContext will never see the changes made in its children until
saveChanges() is explicitly called on them.

66 Chapter 5. Nested EditingContext s

Grand-children of an EditingContext Is it possible to declare a child of an already nested
EditingContext ? Yes! Every EditingContext can have children, irrespective of whether it is
already nested; the depth of a hierarchy defined by parent/childrenEditingContext is indeed unlimited.

5.3 Miscellaneous developer’s hints

How to dynamically identify a nestedEditingContext ? Simply invokeparentObjectStore() on it ; if
the result is anotherEditingContext , it is nested. Otherwise it is a regularEditingContext .

>>> from Modeling.EditingContext import EditingContext
>>> parent_ec=EditingContext()
>>> ec=EditingContext(parent_ec)
>>> ec.parentObjectStore().__class__==EditingContext
1
>>> parent_ec.parentObjectStore().__class__==EditingContext
0

How to determine whether a givenEditingContext is a (grand-)child of an other one? Use the method
isaChildOf , which examines the parent/children hierarchy and answers appropriately:

>>> from Modeling.EditingContext import EditingContext
>>> grand_parent_ec=EditingContext()
>>> parent_ec=EditingContext(grand_parent_ec)
>>> ec=EditingContext(parent_ec)
>>> ec.isaChildOf(parent_ec)
1
>>> ec.isaChildOf(grand_parent_ec)
1

Is it possible to get the children of a givenEditingContext ? No.

5.4 Limitations with multiple child EditingContext s

You may wonder how childEditingContext s behave when changes in any one of them is saved to its parent. The
answer, for now, is quite simple: the other children won’t notice anything. This leads to some problems, depending on
the changes affected in the childEditingContext :

1. if the children only update the data without inserting or deleting any object, you can declare several children for
a givenEditingContext . However, any changes committed by a child for an objectobj will be overriden
when an other child subsequently saves its own changes if, and only if, the same objectobj has also been
updated in that other child.

2. however, the possibility that multiple children would also concurrently insert or delete objects isnot supported.
We strongly advise against having more than one child for a givenEditingContext if you insert or delete
objects in the child, as this would lead to unpredictible behaviour.

5.3. Miscellaneous developer’s hints 67

68

CHAPTER

SIX

Integration in an application

When writing an application using the framework, you normally do not care about any of its components – except
EditingContext s.

An EditingContext is the place where your objects live, i.e. where they are inserted, fetched, deleted, or updated.
This important container holds your graph of objects as it gets changed, until the point where these changes are saved
as a whole.

However, depending on the kind of applications you are developing, you will take different approaches. We’ll see how
this can be done, either in a pure-python application or within application servers like Zope or others. We suggest that
you read the whole chapter, whatever your specific needs are: it explains how the framework reacts and how it can be
used in standard situations.

6.1 Pure python applications

For a standard python application, you probably will not need more than oneEditingContext , containing all your
objects. Typically, you will delegate the building and servicing for that application-wideEditingContext to some
central manager all your objects/widgets/whatever we have access to.

Additionally, you’ll maybe need from time to time to create a childEditingContext , for example if you need to
make some changes and processing in a pop-up window and want to propose a ’Cancel’ button at any point of the
process. See chapter 5 for details.

Python ”batches”: if you’re designing python scripts that fetch and manipulate a lot of objects, please also read
section 4.7 that gives valuable details about finalization of anEditingContext .

6.2 Instructions of use in a multi-threaded environment

The framework itself is designed to work in a multi-threaded environment, and it makes sure that critical sections ac-
cessing shared variables are correctly handled (such as when the moduleDatabase provides or updates the globally
cached database snapshots).

However, the EditingContext itself is not MT-safe by default. If your application requires that an
EditingContext is concurrently accessed by different threads, you have to make sure that you lock it before
use (e.g., before saving changes); methodslock() andunlock() are provided for that purpose. Typical usage
follows:

69

try:
ec.lock()
ec.saveChanges()

finally:
ec.unlock()

Warning: Locking anEditingContext doesNOT lock the objects it contains. If you want e.g. to be able to
concurrently access & update the objects, you can take different approaches. For example, you might decide to use the
EditingContext lock as a global locking mechanism, or you’ll design your own locking scheme for your objects.

Last, two nestedEditingContext which have the same parent and are managed by two different threads can
concurrently save their changes to their parent without explictly locking it –this is managed automatically. This
is worth noting, even if this is logical since the framework is supposed to ensure that any operations made on an
EditingContext is safe in a multi-threaded environment (given that theEditingContext is not shared be-
tween threads, obviously).

6.3 Integration within application servers: using the sessioning mecha-
nism

For an application run by an application server, different approaches are possible. All of them requires at some point
that you have a sessioning mechanism at hand. It should not be a problem since most, if not all, application servers
offer such a mechanism.

1. You can choose to have the same configuration as in a standalone python app., i.e. an application-wide
EditingContext .

2. Or you can also decide to bind a differentEditingContext to each session.

Each option has its drawbacks: some are inherently bound to what they are, some are due to specific features not being
implemented yet. Let’s look at the details.

6.3.1 Sharing an EditingContext between sessions

The first solution consists in having a single sharedEditingContext in your application.

It obviously requires that you take all appropriate measures to ensure that your application is MT-safe, as described in
the previous section.

What about making changes? Obviously you do not want your users to see the changes made by others until they are
committed to the database. Thus, you’ll occasionally create a specificEditingContext on which the changes will
be made – we recommend that you use a childEditingContext in this case, see chapter 5. For the same reason,
theEditingContext used for registering and saving the modifications should not be shared by different users.

Then, you must keep in mind that the sharedEditingContext will receive all the objects that can be possibly
loaded by the sessions coming up. The main problem with such an approach is that you will probably end up with all
your objects being loaded in the sharedEditingContext after some hours or days (depending on the number of
hits your application receives, the number of objects that a request can load, etc.). If your database is quite big and/or
if it quickly grows, your application is likely to end with exhausting the available memory.

What happens here is you do not have any means to distinguish between the objects loaded by sessionS1 and objects
loaded by sessionS2 ; as a consequence you cannot clean up the sharedEditingContext when a session is expired

70 Chapter 6. Integration in an application

and destroyed. The only thing you can do for clean-up is to detect that no more sessions are available: at this point,
you would probably drop the existingEditingContext and create a brand new one.

For these reasons, we do not recommend this solution – except maybe in special cases where the database is a small
one, but even then, why would you use a database if you can’t count on your application to scale when the db is
growing?

Note: At some point in the future, with the implementation of the following feature described below, this negative rec-
ommendation may change: We may support a special attribute for you to specify the maximum number of (unchanged)
objects you want anEditingContext to contain. Then, when the maximum number of objects is reached, it would
be possible to automatically clean theEditingContext (the oldest object would be re-faulted/invalidated, or ”ghos-
tified” in ZODB jargon). There is no ETA for this feature however, it is just a TODO item. If you think you need the
feature, please go ahead and let us know!

6.3.2 Sessioning

The second approach involves a per-session creation mechanism forEditingContext s.

The framework provides the moduleutilities.EditingContextSessioning for such situations. This mod-
ule acts as central repository to which a sessioning mechanism can be bound for creating, accessing and destroying an
EditingContext as sessions come up and expire. The module documentation gives full details about its methods
and how they can be used.

Known problem: By definition, such a configuration isolates the changes different users makeuntil they are com-
mitted. The problem here is that evenafter a user has committed changes, the other users that are already connected
and whose session already got anEditingContext will not see the changes made to objects previously fetched
– new users connecting afterwards will see the changes, though, as will current users who did not fetch the updated
objects before they were committed.

This is due to a feature missing in the framework, where changes to an EditingContext are not broadcasted
to others. Resolution of this issue is planned for after release 0.9.

There is currently no satisfying solution for this problem.

6.4 Zope

The framework is shipped with a particular component,ZEditingContextSessioning , that makes it possible
to have anEditingContext lazily created on a per-session basis.

When installed in the Products/ folder of a Zope instance, it automatically modifies the class
TransientObject 1 and adds a new method to it:defaultEditingContext . It also binds itself to the ses-
sioning machinery so that theEditingContext attached to a session is automatically finalized when the session is
expired.

Accessing the EditingContext bound to a particular session is as simple as calling
defaultEditingContext() on theSESSIONobject.

Note: Zope does not immediately destroy expired sessions ; they are marked as expired and are only destroyed
when a given thread is elected for doing the ”housekeeping” (see ‘lib/python/Products/Transience/Transience.py’,
method getCurrentBucket()). This means that thedefaultEditingContext assigned to a session will not be
finalized when the session expires, but a certain amount of time afterwards.

1TheSESSIONobject is an instance ofTransientObject

6.4. Zope 71

Figure 6.1: Binding Zope txn to SESSION’s defaultEC() txn

6.4.1 Binding the default EC transactions to Zope transactions

A special property has been added to theZEditingContextSessioning product which allows the
transactions of a session’s defaultEditingContext to be bound to Zope’s transactions. This means
that each time a Zope’s transaction/request ends,saveChanges() is automatically called on the session’s
defaultEditingContext() .

To enable this feature, go toControl Panel >Products >ZEditingContextSessioning
>Properties and check thebind saveChanges to zope transactions box –see fig.6.1.

6.5 Others

As far as I know the framework has not been integrated in other frameworks. However it is shipped with a component,
utilities.EditingContextSessioning , which should make it easy to bind it to any existing sessioning
machinery. The documentation in this module gives all necessary details and instructions of use.

We will be happy to hear from you if you integrate it to other development platforms!

72 Chapter 6. Integration in an application

Part II

Advanced techniques

73

CHAPTER

SEVEN

Accessing a model and its properties

Every model required at runtime is loaded into a singleModelSet , the so-called “default model set”. It is accessed
this way:

>>> from Modeling.ModelSet import defaultModelSet
>>> ms=defaultModelSet()

Suppose we already imported the two test packagesAuthorBooks andStoreEmployees , then we have:

>>> ms.modelsNames()
[’AuthorBooks’, ’StoreEmployees’]

The two corresponding models have been correctly imported, as expected.

Accessing a model in particular, or one of its entities is straightforward:

>>> model_AuthorBooks=ms.modelNamed(’AuthorBooks’)
>>> model_AuthorBooks.entitiesNames()
[’Writer’, ’Book’]
>>> model_AuthorBooks.entities()
(<Entity instance at 8396b50>, <Entity instance at 8337cd0>)
>>> entity_Book=model_AuthorBooks.entityNamed(’Book’)

Note: you do not need to access a model to get one of its entities; since entities share a common namespace inside a
ModelSet , this can be asked to the model set as well:

>>> ms.entitiesNames()
(’Writer’, ’Book’, ’Store’, ’Employee’, ’Address’, ’SalesClerk’,

’Executive’, ’Mark’)
>>> ms.entityNamed(’Book’)
<Entity instance at 8337cd0>

Last, given an entity, you can access its attributes and relationships quite the same way, for example:

75

>>> # All attributes’ names
... entity_Book.attributesNames()
(’title’, ’id’, ’price’, ’FK_Writer_Id’)
>>> # All relationships’ names
... entity_Book.relationshipsNames()
(’author’,)
>>> # Class properties only
... entity_Book.classProperties()
(<Attribute instance at 839bc38>, <Attribute instance at 83c5720>,

<Attribute instance at 83eaca8>, <SimpleRelationship instance at 840b280>)
>>> # and their names
... entity_Book.classPropertiesNames()
[’title’, ’id’, ’price’, ’author’]
>>> # dealing with an attribute
... book_title=entity_Book.attributeNamed(’title’)
>>> book_title.type(), book_title.externalType(), book_title.width()
(’string’, ’VARCHAR’, 40)

Each of the classesModel , Entity , Attribute andRelationship have more functionalities then that. We
invite you to look at their respective API for further details.

76 Chapter 7. Accessing a model and its properties

CHAPTER

EIGHT

Generic manipulation of objects

In this chapter, we’ll see how each object’s properties can be dynamically handled.

8.1 Manipulating objects and their relationships

With the methods defined by the interfaceRelationshipManipulation (implemented byCustomObject),
you can assign an objectBook to another objectAuthor , and conversely, without even knowing if the relationship
has some inverse relationship, or even if the relationship is toOne or toMany: all that you need to know is the ’key’
(i.e. the name of the relationship) to which you want to add an given object. Example:

aBook.addObjectToBothSidesOfRelationshipWithKey(anAuthor, ’author’)

Here, the framework analyses the underlying model, does what is necessary so that your objects are in sync. Moreover,
supposeaBook already hasauthor2assigned to relationshipauthor, then the inverse relationship joiningauthor2to
aBookis nullified, so that the graph of object remains consistent.

Compare this with that you normally do by hand, the explicit way:

_author=aBook.getAuthor()
if _author:

_author.removeFromBooks(aBook)
aBook.setAuthor(anAuthor)
anAuthor.addToBooks(aBook)

addObjectToBothSidesOfRelationshipWithKey does exactly the same thing, taking care of all the details
for you (even it’s a bit slower than the explicit statements because it has to examine the model).

This can come in handy for rapid prototyping, or to make things smoother when you are beginning the dev. and that
the model can rapidly change, or for designing generic algorithms where the manipulated objects and relationships are
not known at runtime.

Last note: the inverse method is the following one:

removeObjectFromBothSidesOfRelationshipWithKey

and works on the same principles.

77

8.2 Accessing the objects’ properties

(quick notes, needs to be further documented)

The KeyValueCoding interface is also implemented byCustomObject ; it defines methods for accessing and
setting attributes’ values to keys. In fact, theRelationshipManipulation interface is, somehow, the equivalent
of theKeyValueCoding for relationships.

TheKeyValueCoding interface defines methodsvalueForKey andtakeValueForKey . These methods allow
you to access a property (i.e. the value stored for an attribute or a relationship) in an object without knowing exactly
how it is stored. This is quite similar to, for example, the “Unified Dotted Notation” (see: Name Mapper Syntax (at
http://www.cheetahtemplate.org/docs/usersguide html multipage/language.namemapper.html) and Underscored
Attributes (at http://www.cheetahtemplate.org/docs/usersguide html multipage/language.namemapper.underscore.html)
in CheetahTemplate’s documentation).

8.2.1 How does it work

ThevalueForKey searches the property’key’ in the following way: it first searches some getters (methods), and
falls back to searching for instance’s attributes if none where found; if you need to remember something, it is that
methods are always preferred. The searches are made in the following order:

1. methodget Key()

2. methodkey ()

3. method get Key()

4. method key ()

5. variable key

6. variable key

The methodtakeValueForKey also searches setters, than attributes, in the following order:

1. methodset Key()

2. method set Key()

3. variable key

4. variable key

8.2.2 The whole API

• valueForKey() gets a value for a given attribute’s name,

• takeValueForKey() sets a value for a given attribute’s name,

• valueForKeyPath() is working the same way thanvalueForKey , except that the key can be
here expressed by dotted notation to automatically access an other related object’s property (such as:
"author.lastName" for aBook object –see examples, below)

• takeValueForKeyPath() is like takeValueForKey with dotted notations

Additionally, two more methods are available:

• valuesForKeys() : returns the list of values taken by the supplied attributes

• takeValuesFromDictionary() : sets each key/attribute with its corresponding value

78 Chapter 8. Generic manipulation of objects

8.2.3 Examples

Some quick examples:

• aBook.valueForKey("title") is equivalent toaBook.getTitle()

• aBook.takeValueForKey("Les miserables", "title") is equivalent to
aBook.setTitle("Les miserables")

• aBook.valueForKeyPath("author.lastName") is equivalent to
aBook.getAuthor().getLastName()

• aBook.takeValueForKeyPath("Hugo", "author.lastName") is equivalent to
aBook.getAuthor().setLastName("Hugo")

• aBook.valuesForKeys([’title’, ’price’]) is equivalent to [aBook.getTitle(),
aBook.getPrice()]

Of course, the objects’ properties may always still be accessed using the getters and setters of your python objects,

8.3 Mixing KeyValueCoding and model’s properties

We’ll see that dynamic manipulation of an object’s properties and relationships can be completely generic, using the
techniques we saw in the previous chapters.

Since we know how model’s properties can be retrieved, and how an object can be generically asked for a given
property, we can combine these two techniques to generically manipulate any object, for example to print informations
on a list of different objects:

8.3. Mixing KeyValueCoding and model’s properties 79

>>> ms=defaultModelSet()
>>> objs=ec.fetch(’Writer’, qualifier=’lastName=="Cleese"’)
>>> objs.extend(ec.fetch(’Book’))
>>> #
... # Now we will manipulate ’objs’ without explicitly referring
... # to its methods
...
>>> for o in objs:
... print ’Object ’,o
... for cp in ms.entityNamed(o.entityName()).classProperties_attributes():
... print ’ %s: %s’%(cp.name(),o.valueForKey(cp.name()))
Object (<Writer.Writer instance at 0x8485a04>) John Cleese

age: 24
lastName: Cleese
firstName: John
birthday: 1939-10-27 08:31:15.00

Object <Book.Book instance at 0x8491f94>
title: Gargantua
id: 1
price: None

Object <Book.Book instance at 0x848a1fc>
title: Bouge ton pied que je voie la mer
id: 2
price: None

Object <Book.Book instance at 0x848f50c>
title: Le coup du pere Francois
id: 3
price: None

Object <Book.Book instance at 0x84a38b4>
title: T’assieds pas sur le compte-gouttes
id: 4
price: None

We can achieve the same thing withvaluesForKeys() :

>>> for o in objs:
... print ’Object ’,o
... cp_attrs=ms.entityNamed(o.entityName()).classProperties_attributes()
... cp_attrs_names=[cp.name() for cp in cp_attrs]
... print ’ ’,o.valuesForKeys(cp_attrs_names)
Object (<Writer.Writer instance at 0x8485a04>) John Cleese

[24, ’Cleese’, ’John’, <DateTime object for ’1939-10-27 08:31:15.00’ at 81984f0>]
Object <Book.Book instance at 0x8491f94>

[’Gargantua’, 1, None]
Object <Book.Book instance at 0x848a1fc>

[’Bouge ton pied que je voie la mer’, 2, None]
Object <Book.Book instance at 0x848f50c>

[’Le coup du pere Francois’, 3, None]
Object <Book.Book instance at 0x84a38b4>

["T’assieds pas sur le compte-gouttes", 4, None]

80 Chapter 8. Generic manipulation of objects

CHAPTER

NINE

Handling custom types for attributes

The framework handles automatically a subset of built-in python types:int , string , float and date types (e.g.
mx.DateTime). We’ll see here how you can make the framework automatically assign to attributes’ values real
objects.

9.1 Example: using FixedPoint for a price attribute

Sometimes you need more than this. Let’s take the test packageAuthorBooks , and suppose we want to use
FixedPoint 1.

• change the model so that price is astring /VARCHAR(was: afloat /NUMERIC(10,2)): we will store the
FixedPoint object as a string, not as a float, because of the inherent imprecision which goes any (binary)
representation of float2

• add setPrice() and getPrice() to AuthorBooks.Book :

PRECISION=2
def _setPrice(self, value):

if value is None:
self._price=None

else:
self._price = FixedPoint(value, PRECISION)

def _getPrice(self):
if self._price:

return None
else:

return str(self._price)

Now let’s test this: (remember to change the DB schema so that table BOOK’s attributeprice is aVARCHAR)

1FixedPoint package can be found on sourceforge (at http://fixedpoint.sourceforge.net/html/lib/module-FixedPoint.html)
2try to type ’0.7 ’ in a python interpreter:

>>> 0.7
0.69999999999999996

81

>>> from fixedpoint import FixedPoint
>>> from AuthorBooks.Book import Book
>>> from Modeling.EditingContext import EditingContext
>>> ec=EditingContext()
>>> book=Book()
>>> book.setTitle(’Test FixedPoint’)
>>> book.setPrice(FixedPoint("3.341"))
>>> book.getTitle(), book.getPrice()
(’Test FixedPoint’, FixedPoint(’3.34’, 2)) # precision=2
>>> ec.insert(book)
>>> ec.saveChanges()
>>> book.getTitle(), book.getPrice()
(’Test FixedPoint’, FixedPoint(’3.34’, 2))

Here you can check in you db that it was stored as avarchar , as expected. Start a new python and test the fetch:

>>> from fixedpoint import FixedPoint
>>> from Modeling.EditingContext import EditingContext
>>> ec=EditingContext()
>>> books=ec.fetch(’Book’)
>>> books[0].getTitle(), books[0].getPrice()
(’Test FixedPoint’, FixedPoint(’3.34’, 2))

As you can see,FixedPoint is now correctly and automatically handled by the framework.

This technique can be used for any custom type you want to use. The next section gives some details on how this
works.

9.2 Behind the scenes

We have seen how to map any attribute’s value to an instance of given class. Here again, this is theKeyValueCoding
in action, as described in section 8.2.

The framework always accesses the attributes’ values with the so-called ”private” methods
(storedValueForKey() , takeStoredValueForKey()). We already know that they will try to use
private setters/getters –such assetPrice() and getPrice() – before the public ones –beinggetPrice()
andsetPrice()).

So, what happens here is:

1. when the framework is about to save the data, it collects the attributes’ value usingstoredValueForKey .
This one finds getprice() , which gently returns the corresponding string,

Note: the same happens for validation before saving: type checking also callsgetPrice() and gets a string,
so everything’s ok.

2. when the framework fetches the data, it usestakeStoredValueForKey() to initialize attributes’ val-
ues; for the attributeprice , this method finds and callssetPrice() which turns the string back to
FixedPoint .

82 Chapter 9. Handling custom types for attributes

Part III

Appendices

83

APPENDIX

A

Environment Variables

A.1 Core

Warning: Environment variableMDL PERMANENTDB CONNECTIONhas been deprecated and has no effect
anymore. It has been replaced byMDL TRANSIENT DB CONNECTIONwhich has the opposite semantics.

Name Description Possible values
MDL DB CONNECTIONSCFG

It happens that a model can be written in different places: in an xml file, in a
python file, and even in a pickle when you usemdl compile model.py .
The consequence is that the connection dictionary itself for each model,
containing the user and its password, is written two or three times in the
filesystems. For security and administrative reasons, one would prefer that this
sensitive information should be written in a single place.

This environment variable allows you to externalize the connection dic-
tionaries of all your models in a single file; you’ll typically remove the user
and password from your models, and add these informations to a single file,
say ‘/full/path/to/db conn dicts.cfg’, in a dedicated section for each model,
like this:

[<ModelName>]
user: <username>
password: <passwd>

Then, simply assign to the env. variableMDL DB CONNECTIONSCFG
the full path to your ‘db conn dicts.cfg’, and your models’ connection
dictionaries will automatically be updated when they are loaded.
Last, every parameter normally assigned to a connection dictionary can be
defined in this file, such as:host , port , etc. An extra field can be specified,
adaptor , which overrides the adaptor’s name in your model (example value:
Postgresql , MySQL).
See also python documentation forConfigParser .

full path to an ini-file

MDL ENABLE DATABASELOGGING
DatabaseAdaptors for Postgresql and MySQL use a common logging mech-
anism, whose methods are located in moduleModeling.logging . This
logging is not activated by default, except for error and fatal errors. To en-
able it, you set this variable to any non-empty string ; log outputs go to the
sys.stderr . To disable it, just unset this variable, or set it to the empty
string.

e.g. ’1’, ’YES’ (plus
the empty string for
de-activation)

85

Name Description Possible values
MDL ENABLE SIMPLE METHODCACHE

When this variable is set to any non-empty string, the framework automati-
cally caches the simple methods of models and class description (by simple
methods, we mean methods takingself as their only argument). Since both
of these objects are heavily used at runtime (because model introspection is
needed at various stages), enabling this cache speeds up the simple operations
(for example, the inverse relationship for a given relation is computed once,
then it is cached).
There are situations, however, where you do not want to enable this. For ex-
ample, if after loading your model you need to change anything in it (such as
modifying the connection string, changing an attribute’s external type, adding
a relationship, etc.), this shouldn’t be enabled; if it is, the changes won’t have
any effect on the model themselves: e.g. you can set the connection dictionary
but connectionDictionary() will keep returning its initial value. In
such situations, you can either:

• not enable this cache for the whole application,

• or enable it after all changes have been made, by executing the following
code:

import os

from Modeling.ModelSet import defaultModelSet

os.environ[’MDL ENABLE SIMPLE METHODCACHE’]=’Y’

for model in defaultModelSet().models():

model.cacheSimpleMethods()

Attention: once the caching mechanism has been enabled, it can-
not be disabled (so no more changes can be made to your models)

Note: The environment variableMDL DB CONNECTIONSCFGis taken into
account to update a model’s properties before it is cached, no particular action
is needed in this case.

e.g. ’1’, ’YES’ (plus
the empty string for
de-activation)

MDL TRANSIENT DB CONNECTION
By default, a database connection is left opened after each request, so that
it can be re-used for subsequent requests. When this environment variable
is set to any true value, any opened database connection is closed after
it’s been used –for example, the database connections needed to perform
the actions defined inec.objectsWithFetchSpecification() ,
ec.objectsCountWithFetchSpecification or
ec.saveChanges() are closed as soon before these functions re-
turn.

e.g. ’1’, ’YES’ (plus
the empty string for
de-activation)

86 Appendix A. Environment Variables

A.2 Postgresql specific

Name Description Possible values
MDL PREFERREDPYTHONPOSTGRESQLADAPTOR

By default, the Postgresql Adaptor Layer uses the first module available among
the following ones (in that order):psycopg , pgdb , pypgsql . If you have
more than one of these modules installed, and you prefer that a specific one is
used, you set this variable to the desired name.

’psycopg’ ,
’pgdb’ ,
’pypgsql’

MDL POSTGRESQLSERVERVERSION
Postgresql servers v7.2 and 7.3 behave differently w.r.t. dropping tables and
foreign key constraints. With v7.2 the foreign key constraints are not easily
dropped, in fact the Postgresql Adaptor Layer does not generate any code for
this ; this is however not a problem since v7.2 implicitly drops the related
constraints when dropping a table. On the other hand, version 7.3 does not
allow a simpleDROP TABLE mytable when constraints are bound to ta-
ble, but it makes it possible to identify and drop the PK/FK constraints. Hence
the Postgresql Adaptor Layer can and will generate drop statements for in-
tegrity constraints before dropping a table –the other solution would be:DROP
TABLE mytable CASCADE but this is explicitly and intentionally not im-
plemented. Please note: this only affects db-schema (re)generation and model
validation (because postgresql v7.3 does not support datatypeDATETIME any-
more) ; this does not affect the runtime core for the moment being.

’7.2’ (default),
’7.3’

A.2. Postgresql specific 87

A.3 Mysql specific

Name Description Possible values
MDL MYSQLSERVERVERSION

The framework uses MySQL version number to determine whether SQL92
JOIN statements can be used; if not, the corresponding clause is added
to the WHEREclause. This is because MySQL servers up to 4.0 do not
handleJOIN statements in a standard way, making it impossible to gen-
erate a valid SQL query when more than 2 joins are involved. If
the environment variable is left unset, it defaults to the value returned by
MySQLdb.get client info() .

’3.23’ , ’4.0’ ,
4.0.11a-gamma
(see at end of de-
scription for the
default value)

88 Appendix A. Environment Variables

APPENDIX

B

Frequently Asked Questions

B.1 Designing the model

What if I want to move my package/modules to another package/location/whatever after it has been generated?
If, after generation of code, you need to move the generated package to some other package, or if you need to
move a class to some other module, just adjust you model to reflect your change. The following adjustments
should be made:

• for the model, see field’packageName’

• for entities, see fields’moduleName’ and’className’

The only limitation is that all classes corresponding to entities in a model should be located within the same
package (the one identified by the field’packageName’ in model’s properties).

What if I want to see the primary key values in my objects? Making it a class property Really, you should not
–simply because we do not support anything butautomaticgeneration ofsimpleprimary key (one attribute
only, no compound primary keys), you shouldn’t need to expose the PK values as class’ attributes. But,
ok, if you really want to do that, that is to say, if you declare them as class properties:

• you must also define a default value of0 (integer zero)

• please keep in mind that they should be consideredREAD-ONLY ; if you modify them at run-time, the
framework will not even notice that–it just does not expect it–and things will be out-of-control, for
sure. You’ve been warned!

UsingCustomObject.snapshot raw() This method is the best way to get the values that will be stored
for an object at a given state in the database when changes are saved. It returns a dictionary from which
the value of the primary key can be retrieved. Be sure to carefully read its documentation before using it.

This method does not require that the primary key is made a class property.

Accessing it at run-time There’s a third alternative: the primary key value can always be retrieved from your
objects, without requiring it to be a class property and apart fromsnapshot raw() . You can access
it with globalID ; every single object managed by the framework is uniquely identified by its global id.
Among other things, this one has a dictionary holding the PK values:

>>> object=ec.fetch(’Writer’, qualifier=’age<50’)[0]
>>> object.globalID().keyValues()
{’id’: 1}

So if you need to access the PK for objects of a given class, you can add a method like this one:

89

def pk(self):
"Returns the pk’s value"
gid=self.globalID()
if not gid:

return None
if gid.isTemporary():

temporary gid: object has been inserted but not saved yet.
Change this to return any value you find more appropriate

return gid
return gid.keyValues()[’id’]

Note: CustomObject.globalID() can returnNone when an object has just been inserted into an
EditingContext but has not been saved yet.

What if I want to see the foreign key values in my objects?As a general rule, foreign keys should not be made
class properties; this is an even stricter rule than the one for primary keys, because the frameworkdoes not
update foreign keys valuesin objects that define them as class properties (but of course, they will saved as
expected in the database).

The reason is that a foreign key is usually used to store the piece of information needed to store in the database
a to-one relationship at the object level. Say you have an entity,Writer related with the entityBook in a
one-to-many relationship; the table for entityBook stores the primary key value for the correspondingWriter
in a foreign keyFK Writer id . Suppose now that a book is moved from one author to another: at the object-
level, the book is removed to one author’s set of books and added to the others, while the book itself gets a new
author:

>>> writer1.removeFromBooks(book)
>>> book.setAuthor(writer2)
>>> writer2.addToBooks(book)

If the foreign keyBook.FK Writer id is a class property, it is now out of sync with the book’s author,
because it stores the former author’s id while it has been assigned to an other one.

However, there are several alternate solutions for accessing a foreign key value, if you really insist on doing this:

Using CustomObject.snapshotraw() This particular method was especially design for that purpose, as it
returns the raw data that do/will represent the corresponding database row. As far as foreign keys are
concerned, it tries everything possible to return a foreign key value reflecting the current state of the graph
of object. There are, however, situations where the returned value can get out-of-sync; please refer to the
documentation ofCustomObject.snapshot raw() for details.

Explicitely extracting the related objects’s primary key You can also do it manually, by traversing the rela-
tionship to get its primary key, for example by adding such a method to yourBook :

def getFKWriterId(self):
if self.getWriter() is None:

return None
else:

w_gid=self.getWriter().globalID()
if w_gid.isTemporary():

temporary gid: object has been inserted but not saved yet.
Change this to return any value you find more appropriate
return w_gid

else:
return w_gid.keyValues()

90 Appendix B. Frequently Asked Questions

This code is, in fact, the relevant part of the code ofCustomObject.snapshot raw() . It’s exposed
here so that you can see the different cases that can happen. Of course, it assumes that a to-one relationship
for this foreign key is defined in the object’s entity –if the FK is only involved in an other entity’s to-many
relationship with no inverse, there’s little to do, except relying onCustomObject.snapshot raw()
(see above) that can also retrieve the correct FK value after the first fetch, and after the EditingContext
saved its changes. Please refer to its documentation for full details.

B.1. Designing the model 91

	1 Introduction
	1.1 A historic preamble
	1.2 About this manual

	2 Entity-Relationship Models
	2.1 Sample models used in this manual
	2.1.1 Model: AuthorBooks
	2.1.2 Model: StoreEmployees

	2.2 Concepts
	2.3 Full description
	2.3.1 Model
	2.3.2 Entity
	Primary keys

	2.3.3 Attribute
	Primary keys
	Foreign keys

	2.3.4 Relationship

	2.4 PyModels
	2.4.1 Organization of this chapter
	2.4.2 A sample PyModel
	2.4.3 Defaults
	2.4.4 Model
	Model's version

	2.4.5 Entity
	2.4.6 Attribute
	ADateTime
	AFloat
	AInteger
	AString
	APrimaryKey
	AForeignKey

	2.4.7 Relationship
	BaseRelationship
	RToOne
	RToMany
	Inverse relationships

	2.4.8 Association

	2.5 Xml model
	2.5.1 Overview of the xml
	2.5.2 Model
	2.5.3 Entity
	Primary keys
	Definition of an entity

	2.5.4 Attribute
	2.5.5 Relationship
	Joins

	2.5.6 Full format of an xml-model

	2.6 General guidelines and gotchas
	2.6.1 Simple models (no inheritance)
	2.6.2 Designing relationships
	2.6.3 Modeling many-to-many relationships
	General principle: the correlation table
	A short example

	2.6.4 How to model inheritance
	Horizontal Mapping
	Vertical Mapping
	Filtered Mapping

	2.7 Tools
	2.7.1 The ZModeler
	2.7.2 Scripts

	2.8 Some References on E.-R. Modelling

	3 Functionalities for Object Management
	3.1 From model to python code
	3.1.1 Generating the python code
	The minimum
	Separating the generated code from your own work

	3.1.2 Building the python package dynamically, at run-time
	Dynamic generating of ``standard'' python code
	Dynamic generation using metaclass

	3.1.3 Static vs. dynamic: what's best?

	3.2 The framework's requirements on python code
	3.2.1 Package's, modules' and classes' names
	3.2.2 Within classes

	3.3 Automatic validation of referential and business-logic constraints
	3.3.1 Integrity constraints derived from the underlying model
	3.3.2 Checking constraints: key by key
	Return code
	How to define your own validation logic

	3.3.3 Validation.ValidationException: the list of error-codes
	3.3.4 Validating an object ``as a whole''
	validateForSave()
	validateForDelete()

	3.3.5 Misc.

	4 Working with your objects: insert, changes, deletion
	4.1 Ensuring unicity of an object
	4.2 Inserting an object
	4.3 Updating objects
	4.4 Deleting an object
	4.5 Fetching objects
	4.5.1 Principles
	4.5.2 Simple fetch
	4.5.3 Pattern matching
	4.5.4 Equality, comparisons, in and not in
	4.5.5 Negating, Con- or disjoining qualifiers
	4.5.6 Dotted notation
	4.5.7 How much objects will a query fetch?
	4.5.8 Fetching and inheritance
	4.5.9 The influence of an EditingContext on fetchs
	4.5.10 Fetching raw rows
	Getting raw data
	Turning rows into real objects

	4.6 Saving Changes
	4.7 Discarding changes: the destruction process of an EditingContext
	4.7.1 Finalizing an EditingContext: breaking reference cycles
	4.7.2 Controlling the finalization stage

	5 Nested EditingContexts
	5.1 Bringing transactions to the object world
	5.2 Declaring and using a nested EditingContext
	5.3 Miscellaneous developer's hints
	5.4 Limitations with multiple child EditingContexts

	6 Integration in an application
	6.1 Pure python applications
	6.2 Instructions of use in a multi-threaded environment
	6.3 Integration within application servers: using the sessioning mechanism
	6.3.1 Sharing an EditingContext between sessions
	6.3.2 Sessioning

	6.4 Zope
	6.4.1 Binding the default EC transactions to Zope transactions

	6.5 Others

	7 Accessing a model and its properties
	8 Generic manipulation of objects
	8.1 Manipulating objects and their relationships
	8.2 Accessing the objects' properties
	8.2.1 How does it work
	8.2.2 The whole API
	8.2.3 Examples

	8.3 Mixing KeyValueCoding and model's properties

	9 Handling custom types for attributes
	9.1 Example: using FixedPoint for a price attribute
	9.2 Behind the scenes

	A Environment Variables
	A.1 Core
	A.2 Postgresql specific
	A.3 Mysql specific

	B Frequently Asked Questions
	B.1 Designing the model

